Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isbasis3g | Unicode version |
Description: Express the predicate "the set is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
isbasis3g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasis2g 12683 | . 2 | |
2 | elssuni 3817 | . . . . . 6 | |
3 | 2 | rgen 2519 | . . . . 5 |
4 | eluni2 3793 | . . . . . . 7 | |
5 | 4 | biimpi 119 | . . . . . 6 |
6 | 5 | rgen 2519 | . . . . 5 |
7 | 3, 6 | pm3.2i 270 | . . . 4 |
8 | 7 | biantrur 301 | . . 3 |
9 | df-3an 970 | . . 3 | |
10 | 8, 9 | bitr4i 186 | . 2 |
11 | 1, 10 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 wral 2444 wrex 2445 cin 3115 wss 3116 cuni 3789 ctb 12680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-uni 3790 df-bases 12681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |