ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbasis3g GIF version

Theorem isbasis3g 12838
Description: Express the predicate "the set 𝐵 is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasis3g (𝐵𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦 ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem isbasis3g
StepHypRef Expression
1 isbasis2g 12837 . 2 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
2 elssuni 3824 . . . . . 6 (𝑥𝐵𝑥 𝐵)
32rgen 2523 . . . . 5 𝑥𝐵 𝑥 𝐵
4 eluni2 3800 . . . . . . 7 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
54biimpi 119 . . . . . 6 (𝑥 𝐵 → ∃𝑦𝐵 𝑥𝑦)
65rgen 2523 . . . . 5 𝑥 𝐵𝑦𝐵 𝑥𝑦
73, 6pm3.2i 270 . . . 4 (∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦)
87biantrur 301 . . 3 (∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ ((∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
9 df-3an 975 . . 3 ((∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦 ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))) ↔ ((∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
108, 9bitr4i 186 . 2 (∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ (∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦 ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
111, 10bitrdi 195 1 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦 ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973  wcel 2141  wral 2448  wrex 2449  cin 3120  wss 3121   cuni 3796  TopBasesctb 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797  df-bases 12835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator