ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkvmap Unicode version

Theorem ismkvmap 7213
Description: The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkvmap  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )
Distinct variable groups:    A, f, x   
f, V
Allowed substitution hint:    V( x)

Proof of Theorem ismkvmap
StepHypRef Expression
1 ismkv 7212 . . 3  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
2 2onn 6574 . . . . . 6  |-  2o  e.  om
3 elmapg 6715 . . . . . 6  |-  ( ( 2o  e.  om  /\  A  e.  V )  ->  ( f  e.  ( 2o  ^m  A )  <-> 
f : A --> 2o ) )
42, 3mpan 424 . . . . 5  |-  ( A  e.  V  ->  (
f  e.  ( 2o 
^m  A )  <->  f : A
--> 2o ) )
54imbi1d 231 . . . 4  |-  ( A  e.  V  ->  (
( f  e.  ( 2o  ^m  A )  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )  <->  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
65albidv 1835 . . 3  |-  ( A  e.  V  ->  ( A. f ( f  e.  ( 2o  ^m  A
)  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )  <->  A. f
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
71, 6bitr4d 191 . 2  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f  e.  ( 2o  ^m  A )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
8 df-ral 2477 . 2  |-  ( A. f  e.  ( 2o  ^m  A ) ( -. 
A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) )  <->  A. f
( f  e.  ( 2o  ^m  A )  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
97, 8bitr4di 198 1  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   (/)c0 3446   omcom 4622   -->wf 5250   ` cfv 5254  (class class class)co 5918   1oc1o 6462   2oc2o 6463    ^m cmap 6702  Markovcmarkov 7210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-markov 7211
This theorem is referenced by:  ismkvnex  7214  fodjumkvlemres  7218  enmkvlem  7220  ismkvnnlem  15542
  Copyright terms: Public domain W3C validator