ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkvmap Unicode version

Theorem ismkvmap 7255
Description: The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkvmap  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )
Distinct variable groups:    A, f, x   
f, V
Allowed substitution hint:    V( x)

Proof of Theorem ismkvmap
StepHypRef Expression
1 ismkv 7254 . . 3  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
2 2onn 6606 . . . . . 6  |-  2o  e.  om
3 elmapg 6747 . . . . . 6  |-  ( ( 2o  e.  om  /\  A  e.  V )  ->  ( f  e.  ( 2o  ^m  A )  <-> 
f : A --> 2o ) )
42, 3mpan 424 . . . . 5  |-  ( A  e.  V  ->  (
f  e.  ( 2o 
^m  A )  <->  f : A
--> 2o ) )
54imbi1d 231 . . . 4  |-  ( A  e.  V  ->  (
( f  e.  ( 2o  ^m  A )  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )  <->  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
65albidv 1846 . . 3  |-  ( A  e.  V  ->  ( A. f ( f  e.  ( 2o  ^m  A
)  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) )  <->  A. f
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
71, 6bitr4d 191 . 2  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f  e.  ( 2o  ^m  A )  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
8 df-ral 2488 . 2  |-  ( A. f  e.  ( 2o  ^m  A ) ( -. 
A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) )  <->  A. f
( f  e.  ( 2o  ^m  A )  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
97, 8bitr4di 198 1  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1370    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   (/)c0 3459   omcom 4637   -->wf 5266   ` cfv 5270  (class class class)co 5943   1oc1o 6494   2oc2o 6495    ^m cmap 6734  Markovcmarkov 7252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4339  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1o 6501  df-2o 6502  df-map 6736  df-markov 7253
This theorem is referenced by:  ismkvnex  7256  fodjumkvlemres  7260  enmkvlem  7262  ismkvnnlem  15924
  Copyright terms: Public domain W3C validator