ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm Unicode version

Theorem isprm 12250
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
Distinct variable group:    P, n

Proof of Theorem isprm
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 breq2 4034 . . . 4  |-  ( p  =  P  ->  (
n  ||  p  <->  n  ||  P
) )
21rabbidv 2749 . . 3  |-  ( p  =  P  ->  { n  e.  NN  |  n  ||  p }  =  {
n  e.  NN  |  n  ||  P } )
32breq1d 4040 . 2  |-  ( p  =  P  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
4 df-prm 12249 . 2  |-  Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
53, 4elrab2 2920 1  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {crab 2476   class class class wbr 4030   2oc2o 6465    ~~ cen 6794   NNcn 8984    || cdvds 11933   Primecprime 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-prm 12249
This theorem is referenced by:  prmnn  12251  1nprm  12255  isprm2  12258
  Copyright terms: Public domain W3C validator