Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isprm | Unicode version |
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
isprm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3986 | . . . 4 | |
2 | 1 | rabbidv 2715 | . . 3 |
3 | 2 | breq1d 3992 | . 2 |
4 | df-prm 12040 | . 2 | |
5 | 3, 4 | elrab2 2885 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 crab 2448 class class class wbr 3982 c2o 6378 cen 6704 cn 8857 cdvds 11727 cprime 12039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-prm 12040 |
This theorem is referenced by: prmnn 12042 1nprm 12046 isprm2 12049 |
Copyright terms: Public domain | W3C validator |