ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm GIF version

Theorem isprm 12617
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 breq2 4086 . . . 4 (𝑝 = 𝑃 → (𝑛𝑝𝑛𝑃))
21rabbidv 2788 . . 3 (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑝} = {𝑛 ∈ ℕ ∣ 𝑛𝑃})
32breq1d 4092 . 2 (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
4 df-prm 12616 . 2 ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
53, 4elrab2 2962 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wcel 2200  {crab 2512   class class class wbr 4082  2oc2o 6546  cen 6875  cn 9098  cdvds 12284  cprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-prm 12616
This theorem is referenced by:  prmnn  12618  1nprm  12622  isprm2  12625
  Copyright terms: Public domain W3C validator