| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isprm | GIF version | ||
| Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| isprm | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4086 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑛 ∥ 𝑝 ↔ 𝑛 ∥ 𝑃)) | |
| 2 | 1 | rabbidv 2788 | . . 3 ⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) |
| 3 | 2 | breq1d 4092 | . 2 ⊢ (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
| 4 | df-prm 12616 | . 2 ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} | |
| 5 | 3, 4 | elrab2 2962 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4082 2oc2o 6546 ≈ cen 6875 ℕcn 9098 ∥ cdvds 12284 ℙcprime 12615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-prm 12616 |
| This theorem is referenced by: prmnn 12618 1nprm 12622 isprm2 12625 |
| Copyright terms: Public domain | W3C validator |