ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm GIF version

Theorem isprm 11636
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 breq2 3899 . . . 4 (𝑝 = 𝑃 → (𝑛𝑝𝑛𝑃))
21rabbidv 2646 . . 3 (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑝} = {𝑛 ∈ ℕ ∣ 𝑛𝑃})
32breq1d 3905 . 2 (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
4 df-prm 11635 . 2 ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
53, 4elrab2 2812 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1314  wcel 1463  {crab 2394   class class class wbr 3895  2oc2o 6261  cen 6586  cn 8630  cdvds 11341  cprime 11634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rab 2399  df-v 2659  df-un 3041  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-prm 11635
This theorem is referenced by:  prmnn  11637  1nprm  11641  isprm2  11644
  Copyright terms: Public domain W3C validator