ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm GIF version

Theorem isprm 12041
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 breq2 3986 . . . 4 (𝑝 = 𝑃 → (𝑛𝑝𝑛𝑃))
21rabbidv 2715 . . 3 (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑝} = {𝑛 ∈ ℕ ∣ 𝑛𝑃})
32breq1d 3992 . 2 (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
4 df-prm 12040 . 2 ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
53, 4elrab2 2885 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wcel 2136  {crab 2448   class class class wbr 3982  2oc2o 6378  cen 6704  cn 8857  cdvds 11727  cprime 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-prm 12040
This theorem is referenced by:  prmnn  12042  1nprm  12046  isprm2  12049
  Copyright terms: Public domain W3C validator