Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isprm | GIF version |
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
isprm | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3993 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑛 ∥ 𝑝 ↔ 𝑛 ∥ 𝑃)) | |
2 | 1 | rabbidv 2719 | . . 3 ⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) |
3 | 2 | breq1d 3999 | . 2 ⊢ (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
4 | df-prm 12062 | . 2 ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} | |
5 | 3, 4 | elrab2 2889 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {crab 2452 class class class wbr 3989 2oc2o 6389 ≈ cen 6716 ℕcn 8878 ∥ cdvds 11749 ℙcprime 12061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-prm 12062 |
This theorem is referenced by: prmnn 12064 1nprm 12068 isprm2 12071 |
Copyright terms: Public domain | W3C validator |