ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfimafn2 Unicode version

Theorem dfimafn2 5367
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  U_ x  e.  A  { ( F `  x ) } )
Distinct variable groups:    x, A    x, F

Proof of Theorem dfimafn2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfimafn 5366 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. x  e.  A  ( F `  x )  =  y } )
2 iunab 3782 . . 3  |-  U_ x  e.  A  { y  |  ( F `  x )  =  y }  =  { y  |  E. x  e.  A  ( F `  x )  =  y }
31, 2syl6eqr 2139 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  U_ x  e.  A  { y  |  ( F `  x )  =  y } )
4 df-sn 3456 . . . . 5  |-  { ( F `  x ) }  =  { y  |  y  =  ( F `  x ) }
5 eqcom 2091 . . . . . 6  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
65abbii 2204 . . . . 5  |-  { y  |  y  =  ( F `  x ) }  =  { y  |  ( F `  x )  =  y }
74, 6eqtri 2109 . . . 4  |-  { ( F `  x ) }  =  { y  |  ( F `  x )  =  y }
87a1i 9 . . 3  |-  ( x  e.  A  ->  { ( F `  x ) }  =  { y  |  ( F `  x )  =  y } )
98iuneq2i 3754 . 2  |-  U_ x  e.  A  { ( F `  x ) }  =  U_ x  e.  A  { y  |  ( F `  x
)  =  y }
103, 9syl6eqr 2139 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  U_ x  e.  A  { ( F `  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   {cab 2075   E.wrex 2361    C_ wss 3000   {csn 3450   U_ciun 3736   dom cdm 4452   "cima 4455   Fun wfun 5022   ` cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-fv 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator