ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfimafn2 Unicode version

Theorem dfimafn2 5627
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  U_ x  e.  A  { ( F `  x ) } )
Distinct variable groups:    x, A    x, F

Proof of Theorem dfimafn2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfimafn 5626 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. x  e.  A  ( F `  x )  =  y } )
2 iunab 3973 . . 3  |-  U_ x  e.  A  { y  |  ( F `  x )  =  y }  =  { y  |  E. x  e.  A  ( F `  x )  =  y }
31, 2eqtr4di 2255 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  U_ x  e.  A  { y  |  ( F `  x )  =  y } )
4 df-sn 3638 . . . . 5  |-  { ( F `  x ) }  =  { y  |  y  =  ( F `  x ) }
5 eqcom 2206 . . . . . 6  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
65abbii 2320 . . . . 5  |-  { y  |  y  =  ( F `  x ) }  =  { y  |  ( F `  x )  =  y }
74, 6eqtri 2225 . . . 4  |-  { ( F `  x ) }  =  { y  |  ( F `  x )  =  y }
87a1i 9 . . 3  |-  ( x  e.  A  ->  { ( F `  x ) }  =  { y  |  ( F `  x )  =  y } )
98iuneq2i 3944 . 2  |-  U_ x  e.  A  { ( F `  x ) }  =  U_ x  e.  A  { y  |  ( F `  x
)  =  y }
103, 9eqtr4di 2255 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  U_ x  e.  A  { ( F `  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   {cab 2190   E.wrex 2484    C_ wss 3165   {csn 3632   U_ciun 3926   dom cdm 4674   "cima 4677   Fun wfun 5264   ` cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator