ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunin2 GIF version

Theorem iunin2 3912
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3902 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
iunin2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iunin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.42v 2614 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝑦𝐶))
2 elin 3290 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32rexbii 2464 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 eliun 3853 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
54anbi2i 453 . . . 4 ((𝑦𝐵𝑦 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝑦𝐶))
61, 3, 53bitr4i 211 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
7 eliun 3853 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
8 elin 3290 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
96, 7, 83bitr4i 211 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
109eqriv 2154 1 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wcel 2128  wrex 2436  cin 3101   ciun 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-in 3108  df-iun 3851
This theorem is referenced by:  iunin1  3913  2iunin  3915  resiun1  4882  resiun2  4883
  Copyright terms: Public domain W3C validator