ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iununir GIF version

Theorem iununir 3788
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iununir ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) → (𝐵 = ∅ → 𝐴 = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iununir
StepHypRef Expression
1 unieq 3639 . . . . . 6 (𝐵 = ∅ → 𝐵 = ∅)
2 uni0 3657 . . . . . 6 ∅ = ∅
31, 2syl6eq 2133 . . . . 5 (𝐵 = ∅ → 𝐵 = ∅)
43uneq2d 3140 . . . 4 (𝐵 = ∅ → (𝐴 𝐵) = (𝐴 ∪ ∅))
5 un0 3302 . . . 4 (𝐴 ∪ ∅) = 𝐴
64, 5syl6eq 2133 . . 3 (𝐵 = ∅ → (𝐴 𝐵) = 𝐴)
7 iuneq1 3720 . . . 4 (𝐵 = ∅ → 𝑥𝐵 (𝐴𝑥) = 𝑥 ∈ ∅ (𝐴𝑥))
8 0iun 3764 . . . 4 𝑥 ∈ ∅ (𝐴𝑥) = ∅
97, 8syl6eq 2133 . . 3 (𝐵 = ∅ → 𝑥𝐵 (𝐴𝑥) = ∅)
106, 9eqeq12d 2099 . 2 (𝐵 = ∅ → ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) ↔ 𝐴 = ∅))
1110biimpcd 157 1 ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) → (𝐵 = ∅ → 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1287  cun 2984  c0 3272   cuni 3630   ciun 3707
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2616  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-sn 3431  df-uni 3631  df-iun 3709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator