| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iununir | GIF version | ||
| Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| iununir | ⊢ ((𝐴 ∪ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) → (𝐵 = ∅ → 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3897 | . . . . . 6 ⊢ (𝐵 = ∅ → ∪ 𝐵 = ∪ ∅) | |
| 2 | uni0 3915 | . . . . . 6 ⊢ ∪ ∅ = ∅ | |
| 3 | 1, 2 | eqtrdi 2278 | . . . . 5 ⊢ (𝐵 = ∅ → ∪ 𝐵 = ∅) |
| 4 | 3 | uneq2d 3358 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 ∪ ∪ 𝐵) = (𝐴 ∪ ∅)) |
| 5 | un0 3525 | . . . 4 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 6 | 4, 5 | eqtrdi 2278 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ∪ ∪ 𝐵) = 𝐴) |
| 7 | iuneq1 3978 | . . . 4 ⊢ (𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = ∪ 𝑥 ∈ ∅ (𝐴 ∪ 𝑥)) | |
| 8 | 0iun 4023 | . . . 4 ⊢ ∪ 𝑥 ∈ ∅ (𝐴 ∪ 𝑥) = ∅ | |
| 9 | 7, 8 | eqtrdi 2278 | . . 3 ⊢ (𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = ∅) |
| 10 | 6, 9 | eqeq12d 2244 | . 2 ⊢ (𝐵 = ∅ → ((𝐴 ∪ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) ↔ 𝐴 = ∅)) |
| 11 | 10 | biimpcd 159 | 1 ⊢ ((𝐴 ∪ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) → (𝐵 = ∅ → 𝐴 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 ∅c0 3491 ∪ cuni 3888 ∪ ciun 3965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-uni 3889 df-iun 3967 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |