ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iununir GIF version

Theorem iununir 3954
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iununir ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) → (𝐵 = ∅ → 𝐴 = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iununir
StepHypRef Expression
1 unieq 3803 . . . . . 6 (𝐵 = ∅ → 𝐵 = ∅)
2 uni0 3821 . . . . . 6 ∅ = ∅
31, 2eqtrdi 2219 . . . . 5 (𝐵 = ∅ → 𝐵 = ∅)
43uneq2d 3281 . . . 4 (𝐵 = ∅ → (𝐴 𝐵) = (𝐴 ∪ ∅))
5 un0 3447 . . . 4 (𝐴 ∪ ∅) = 𝐴
64, 5eqtrdi 2219 . . 3 (𝐵 = ∅ → (𝐴 𝐵) = 𝐴)
7 iuneq1 3884 . . . 4 (𝐵 = ∅ → 𝑥𝐵 (𝐴𝑥) = 𝑥 ∈ ∅ (𝐴𝑥))
8 0iun 3928 . . . 4 𝑥 ∈ ∅ (𝐴𝑥) = ∅
97, 8eqtrdi 2219 . . 3 (𝐵 = ∅ → 𝑥𝐵 (𝐴𝑥) = ∅)
106, 9eqeq12d 2185 . 2 (𝐵 = ∅ → ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) ↔ 𝐴 = ∅))
1110biimpcd 158 1 ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) → (𝐵 = ∅ → 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  cun 3119  c0 3414   cuni 3794   ciun 3871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3587  df-uni 3795  df-iun 3873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator