ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iununir GIF version

Theorem iununir 4000
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iununir ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) → (𝐵 = ∅ → 𝐴 = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iununir
StepHypRef Expression
1 unieq 3848 . . . . . 6 (𝐵 = ∅ → 𝐵 = ∅)
2 uni0 3866 . . . . . 6 ∅ = ∅
31, 2eqtrdi 2245 . . . . 5 (𝐵 = ∅ → 𝐵 = ∅)
43uneq2d 3317 . . . 4 (𝐵 = ∅ → (𝐴 𝐵) = (𝐴 ∪ ∅))
5 un0 3484 . . . 4 (𝐴 ∪ ∅) = 𝐴
64, 5eqtrdi 2245 . . 3 (𝐵 = ∅ → (𝐴 𝐵) = 𝐴)
7 iuneq1 3929 . . . 4 (𝐵 = ∅ → 𝑥𝐵 (𝐴𝑥) = 𝑥 ∈ ∅ (𝐴𝑥))
8 0iun 3974 . . . 4 𝑥 ∈ ∅ (𝐴𝑥) = ∅
97, 8eqtrdi 2245 . . 3 (𝐵 = ∅ → 𝑥𝐵 (𝐴𝑥) = ∅)
106, 9eqeq12d 2211 . 2 (𝐵 = ∅ → ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) ↔ 𝐴 = ∅))
1110biimpcd 159 1 ((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) → (𝐵 = ∅ → 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3155  c0 3450   cuni 3839   ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-uni 3840  df-iun 3918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator