ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenlti Unicode version

Theorem lenlti 8127
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
Assertion
Ref Expression
lenlti  |-  ( A  <_  B  <->  -.  B  <  A )

Proof of Theorem lenlti
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 lt.2 . 2  |-  B  e.  RR
3 lenlt 8102 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
41, 2, 3mp2an 426 1  |-  ( A  <_  B  <->  -.  B  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    e. wcel 2167   class class class wbr 4033   RRcr 7878    < clt 8061    <_ cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-xr 8065  df-le 8067
This theorem is referenced by:  sup3exmid  8984  nn0ge2m1nn  9309
  Copyright terms: Public domain W3C validator