ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenlti GIF version

Theorem lenlti 8058
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion
Ref Expression
lenlti (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)

Proof of Theorem lenlti
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 lt.2 . 2 𝐵 ∈ ℝ
3 lenlt 8033 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3mp2an 426 1 (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wcel 2148   class class class wbr 4004  cr 7810   < clt 7992  cle 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-xr 7996  df-le 7998
This theorem is referenced by:  sup3exmid  8914  nn0ge2m1nn  9236
  Copyright terms: Public domain W3C validator