| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenlt | Unicode version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8200 |
. 2
| |
| 2 | rexr 8200 |
. 2
| |
| 3 | xrlenlt 8219 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-xr 8193 df-le 8195 |
| This theorem is referenced by: letri3 8235 ltleletr 8236 letr 8237 leid 8238 eqlelt 8241 ltle 8242 lelttr 8243 ltletr 8244 lenlti 8255 lenltd 8272 lemul1 8748 msqge0 8771 mulge0 8774 ltleap 8787 recgt0 9005 lediv1 9024 dfinfre 9111 nnge1 9141 nnnlt1 9144 avgle1 9360 avgle2 9361 nn0nlt0 9403 zltnle 9500 zleloe 9501 zdcle 9531 recnz 9548 btwnnz 9549 prime 9554 fznlem 10245 nelfzo 10356 fzonlt0 10373 qltnle 10471 bcval4 10982 ccatsymb 11145 swrd0g 11200 resqrexlemgt0 11539 climge0 11844 infpnlem1 12890 efle 15458 logleb 15557 cxple 15599 cxple3 15603 lgsval2lem 15697 lgsneg 15711 lgsdilem 15714 gausslemma2dlem1a 15745 gausslemma2dlem3 15750 supfz 16469 inffz 16470 |
| Copyright terms: Public domain | W3C validator |