Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lenlt | Unicode version |
Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7965 | . 2 | |
2 | rexr 7965 | . 2 | |
3 | xrlenlt 7984 | . 2 | |
4 | 1, 2, 3 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2141 class class class wbr 3989 cr 7773 cxr 7953 clt 7954 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-xr 7958 df-le 7960 |
This theorem is referenced by: letri3 8000 ltleletr 8001 letr 8002 leid 8003 eqlelt 8006 ltle 8007 lelttr 8008 ltletr 8009 lenlti 8020 lenltd 8037 lemul1 8512 msqge0 8535 mulge0 8538 ltleap 8551 recgt0 8766 lediv1 8785 dfinfre 8872 nnge1 8901 nnnlt1 8904 avgle1 9118 avgle2 9119 nn0nlt0 9161 zltnle 9258 zleloe 9259 zdcle 9288 recnz 9305 btwnnz 9306 prime 9311 fznlem 9997 fzonlt0 10123 qltnle 10202 bcval4 10686 resqrexlemgt0 10984 climge0 11288 infpnlem1 12311 efle 13491 logleb 13590 cxple 13631 cxple3 13635 lgsval2lem 13705 lgsneg 13719 lgsdilem 13722 supfz 14100 inffz 14101 |
Copyright terms: Public domain | W3C validator |