| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenlt | Unicode version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8120 |
. 2
| |
| 2 | rexr 8120 |
. 2
| |
| 3 | xrlenlt 8139 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-xr 8113 df-le 8115 |
| This theorem is referenced by: letri3 8155 ltleletr 8156 letr 8157 leid 8158 eqlelt 8161 ltle 8162 lelttr 8163 ltletr 8164 lenlti 8175 lenltd 8192 lemul1 8668 msqge0 8691 mulge0 8694 ltleap 8707 recgt0 8925 lediv1 8944 dfinfre 9031 nnge1 9061 nnnlt1 9064 avgle1 9280 avgle2 9281 nn0nlt0 9323 zltnle 9420 zleloe 9421 zdcle 9451 recnz 9468 btwnnz 9469 prime 9474 fznlem 10165 nelfzo 10276 fzonlt0 10293 qltnle 10388 bcval4 10899 ccatsymb 11061 swrd0g 11116 resqrexlemgt0 11364 climge0 11669 infpnlem1 12715 efle 15281 logleb 15380 cxple 15422 cxple3 15426 lgsval2lem 15520 lgsneg 15534 lgsdilem 15537 gausslemma2dlem1a 15568 gausslemma2dlem3 15573 supfz 16047 inffz 16048 |
| Copyright terms: Public domain | W3C validator |