| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenlt | Unicode version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8075 |
. 2
| |
| 2 | rexr 8075 |
. 2
| |
| 3 | xrlenlt 8094 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-xr 8068 df-le 8070 |
| This theorem is referenced by: letri3 8110 ltleletr 8111 letr 8112 leid 8113 eqlelt 8116 ltle 8117 lelttr 8118 ltletr 8119 lenlti 8130 lenltd 8147 lemul1 8623 msqge0 8646 mulge0 8649 ltleap 8662 recgt0 8880 lediv1 8899 dfinfre 8986 nnge1 9016 nnnlt1 9019 avgle1 9235 avgle2 9236 nn0nlt0 9278 zltnle 9375 zleloe 9376 zdcle 9405 recnz 9422 btwnnz 9423 prime 9428 fznlem 10119 nelfzo 10230 fzonlt0 10246 qltnle 10336 bcval4 10847 resqrexlemgt0 11188 climge0 11493 infpnlem1 12539 efle 15038 logleb 15137 cxple 15179 cxple3 15183 lgsval2lem 15277 lgsneg 15291 lgsdilem 15294 gausslemma2dlem1a 15325 gausslemma2dlem3 15330 supfz 15744 inffz 15745 |
| Copyright terms: Public domain | W3C validator |