Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lenlt | Unicode version |
Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7940 | . 2 | |
2 | rexr 7940 | . 2 | |
3 | xrlenlt 7959 | . 2 | |
4 | 1, 2, 3 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 class class class wbr 3981 cr 7748 cxr 7928 clt 7929 cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-xr 7933 df-le 7935 |
This theorem is referenced by: letri3 7975 ltleletr 7976 letr 7977 leid 7978 eqlelt 7981 ltle 7982 lelttr 7983 ltletr 7984 lenlti 7995 lenltd 8012 lemul1 8487 msqge0 8510 mulge0 8513 ltleap 8526 recgt0 8741 lediv1 8760 dfinfre 8847 nnge1 8876 nnnlt1 8879 avgle1 9093 avgle2 9094 nn0nlt0 9136 zltnle 9233 zleloe 9234 zdcle 9263 recnz 9280 btwnnz 9281 prime 9286 fznlem 9972 fzonlt0 10098 qltnle 10177 bcval4 10661 resqrexlemgt0 10958 climge0 11262 infpnlem1 12285 efle 13297 logleb 13396 cxple 13437 cxple3 13441 lgsval2lem 13511 lgsneg 13525 lgsdilem 13528 supfz 13907 inffz 13908 |
Copyright terms: Public domain | W3C validator |