Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negfi | Unicode version |
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
negfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . . . . . . . 10 | |
2 | renegcl 8180 | . . . . . . . . . 10 | |
3 | 1, 2 | syl6 33 | . . . . . . . . 9 |
4 | 3 | imp 123 | . . . . . . . 8 |
5 | 4 | ralrimiva 2543 | . . . . . . 7 |
6 | dmmptg 5108 | . . . . . . 7 | |
7 | 5, 6 | syl 14 | . . . . . 6 |
8 | 7 | eqcomd 2176 | . . . . 5 |
9 | 8 | eleq1d 2239 | . . . 4 |
10 | funmpt 5236 | . . . . 5 | |
11 | fundmfibi 6916 | . . . . 5 | |
12 | 10, 11 | mp1i 10 | . . . 4 |
13 | 9, 12 | bitr4d 190 | . . 3 |
14 | reex 7908 | . . . . . 6 | |
15 | 14 | ssex 4126 | . . . . 5 |
16 | mptexg 5721 | . . . . 5 | |
17 | 15, 16 | syl 14 | . . . 4 |
18 | eqid 2170 | . . . . . 6 | |
19 | 18 | negf1o 8301 | . . . . 5 |
20 | f1of1 5441 | . . . . 5 | |
21 | 19, 20 | syl 14 | . . . 4 |
22 | f1vrnfibi 6922 | . . . 4 | |
23 | 17, 21, 22 | syl2anc 409 | . . 3 |
24 | 1 | imp 123 | . . . . . . . . . 10 |
25 | 2 | adantl 275 | . . . . . . . . . . 11 |
26 | recn 7907 | . . . . . . . . . . . . . . . . 17 | |
27 | 26 | negnegd 8221 | . . . . . . . . . . . . . . . 16 |
28 | 27 | eqcomd 2176 | . . . . . . . . . . . . . . 15 |
29 | 28 | eleq1d 2239 | . . . . . . . . . . . . . 14 |
30 | 29 | biimpcd 158 | . . . . . . . . . . . . 13 |
31 | 30 | adantl 275 | . . . . . . . . . . . 12 |
32 | 31 | imp 123 | . . . . . . . . . . 11 |
33 | 25, 32 | jca 304 | . . . . . . . . . 10 |
34 | 24, 33 | mpdan 419 | . . . . . . . . 9 |
35 | eleq1 2233 | . . . . . . . . . 10 | |
36 | negeq 8112 | . . . . . . . . . . 11 | |
37 | 36 | eleq1d 2239 | . . . . . . . . . 10 |
38 | 35, 37 | anbi12d 470 | . . . . . . . . 9 |
39 | 34, 38 | syl5ibrcom 156 | . . . . . . . 8 |
40 | 39 | rexlimdva 2587 | . . . . . . 7 |
41 | simprr 527 | . . . . . . . . 9 | |
42 | negeq 8112 | . . . . . . . . . . 11 | |
43 | 42 | eqeq2d 2182 | . . . . . . . . . 10 |
44 | 43 | adantl 275 | . . . . . . . . 9 |
45 | recn 7907 | . . . . . . . . . . 11 | |
46 | negneg 8169 | . . . . . . . . . . . 12 | |
47 | 46 | eqcomd 2176 | . . . . . . . . . . 11 |
48 | 45, 47 | syl 14 | . . . . . . . . . 10 |
49 | 48 | ad2antrl 487 | . . . . . . . . 9 |
50 | 41, 44, 49 | rspcedvd 2840 | . . . . . . . 8 |
51 | 50 | ex 114 | . . . . . . 7 |
52 | 40, 51 | impbid 128 | . . . . . 6 |
53 | 52 | abbidv 2288 | . . . . 5 |
54 | 18 | rnmpt 4859 | . . . . 5 |
55 | df-rab 2457 | . . . . 5 | |
56 | 53, 54, 55 | 3eqtr4g 2228 | . . . 4 |
57 | 56 | eleq1d 2239 | . . 3 |
58 | 13, 23, 57 | 3bitrd 213 | . 2 |
59 | 58 | biimpa 294 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 cmpt 4050 cdm 4611 crn 4612 wfun 5192 wf1 5195 wf1o 5197 cfn 6718 cc 7772 cr 7773 cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 df-sub 8092 df-neg 8093 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |