Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negfi | Unicode version |
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
negfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . . . . . . . 10 | |
2 | renegcl 8159 | . . . . . . . . . 10 | |
3 | 1, 2 | syl6 33 | . . . . . . . . 9 |
4 | 3 | imp 123 | . . . . . . . 8 |
5 | 4 | ralrimiva 2539 | . . . . . . 7 |
6 | dmmptg 5101 | . . . . . . 7 | |
7 | 5, 6 | syl 14 | . . . . . 6 |
8 | 7 | eqcomd 2171 | . . . . 5 |
9 | 8 | eleq1d 2235 | . . . 4 |
10 | funmpt 5226 | . . . . 5 | |
11 | fundmfibi 6904 | . . . . 5 | |
12 | 10, 11 | mp1i 10 | . . . 4 |
13 | 9, 12 | bitr4d 190 | . . 3 |
14 | reex 7887 | . . . . . 6 | |
15 | 14 | ssex 4119 | . . . . 5 |
16 | mptexg 5710 | . . . . 5 | |
17 | 15, 16 | syl 14 | . . . 4 |
18 | eqid 2165 | . . . . . 6 | |
19 | 18 | negf1o 8280 | . . . . 5 |
20 | f1of1 5431 | . . . . 5 | |
21 | 19, 20 | syl 14 | . . . 4 |
22 | f1vrnfibi 6910 | . . . 4 | |
23 | 17, 21, 22 | syl2anc 409 | . . 3 |
24 | 1 | imp 123 | . . . . . . . . . 10 |
25 | 2 | adantl 275 | . . . . . . . . . . 11 |
26 | recn 7886 | . . . . . . . . . . . . . . . . 17 | |
27 | 26 | negnegd 8200 | . . . . . . . . . . . . . . . 16 |
28 | 27 | eqcomd 2171 | . . . . . . . . . . . . . . 15 |
29 | 28 | eleq1d 2235 | . . . . . . . . . . . . . 14 |
30 | 29 | biimpcd 158 | . . . . . . . . . . . . 13 |
31 | 30 | adantl 275 | . . . . . . . . . . . 12 |
32 | 31 | imp 123 | . . . . . . . . . . 11 |
33 | 25, 32 | jca 304 | . . . . . . . . . 10 |
34 | 24, 33 | mpdan 418 | . . . . . . . . 9 |
35 | eleq1 2229 | . . . . . . . . . 10 | |
36 | negeq 8091 | . . . . . . . . . . 11 | |
37 | 36 | eleq1d 2235 | . . . . . . . . . 10 |
38 | 35, 37 | anbi12d 465 | . . . . . . . . 9 |
39 | 34, 38 | syl5ibrcom 156 | . . . . . . . 8 |
40 | 39 | rexlimdva 2583 | . . . . . . 7 |
41 | simprr 522 | . . . . . . . . 9 | |
42 | negeq 8091 | . . . . . . . . . . 11 | |
43 | 42 | eqeq2d 2177 | . . . . . . . . . 10 |
44 | 43 | adantl 275 | . . . . . . . . 9 |
45 | recn 7886 | . . . . . . . . . . 11 | |
46 | negneg 8148 | . . . . . . . . . . . 12 | |
47 | 46 | eqcomd 2171 | . . . . . . . . . . 11 |
48 | 45, 47 | syl 14 | . . . . . . . . . 10 |
49 | 48 | ad2antrl 482 | . . . . . . . . 9 |
50 | 41, 44, 49 | rspcedvd 2836 | . . . . . . . 8 |
51 | 50 | ex 114 | . . . . . . 7 |
52 | 40, 51 | impbid 128 | . . . . . 6 |
53 | 52 | abbidv 2284 | . . . . 5 |
54 | 18 | rnmpt 4852 | . . . . 5 |
55 | df-rab 2453 | . . . . 5 | |
56 | 53, 54, 55 | 3eqtr4g 2224 | . . . 4 |
57 | 56 | eleq1d 2235 | . . 3 |
58 | 13, 23, 57 | 3bitrd 213 | . 2 |
59 | 58 | biimpa 294 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 crab 2448 cvv 2726 wss 3116 cmpt 4043 cdm 4604 crn 4605 wfun 5182 wf1 5185 wf1o 5187 cfn 6706 cc 7751 cr 7752 cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 df-sub 8071 df-neg 8072 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |