ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negfi Unicode version

Theorem negfi 10999
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
negfi  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  { n  e.  RR  |  -u n  e.  A }  e.  Fin )
Distinct variable group:    A, n

Proof of Theorem negfi
Dummy variables  a  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3091 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( a  e.  A  ->  a  e.  RR ) )
2 renegcl 8023 . . . . . . . . . 10  |-  ( a  e.  RR  ->  -u a  e.  RR )
31, 2syl6 33 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( a  e.  A  ->  -u a  e.  RR ) )
43imp 123 . . . . . . . 8  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  -u a  e.  RR )
54ralrimiva 2505 . . . . . . 7  |-  ( A 
C_  RR  ->  A. a  e.  A  -u a  e.  RR )
6 dmmptg 5036 . . . . . . 7  |-  ( A. a  e.  A  -u a  e.  RR  ->  dom  ( a  e.  A  |->  -u a
)  =  A )
75, 6syl 14 . . . . . 6  |-  ( A 
C_  RR  ->  dom  (
a  e.  A  |->  -u a )  =  A )
87eqcomd 2145 . . . . 5  |-  ( A 
C_  RR  ->  A  =  dom  ( a  e.  A  |->  -u a ) )
98eleq1d 2208 . . . 4  |-  ( A 
C_  RR  ->  ( A  e.  Fin  <->  dom  ( a  e.  A  |->  -u a
)  e.  Fin )
)
10 funmpt 5161 . . . . 5  |-  Fun  (
a  e.  A  |->  -u a )
11 fundmfibi 6827 . . . . 5  |-  ( Fun  ( a  e.  A  |-> 
-u a )  -> 
( ( a  e.  A  |->  -u a )  e. 
Fin 
<->  dom  ( a  e.  A  |->  -u a )  e. 
Fin ) )
1210, 11mp1i 10 . . . 4  |-  ( A 
C_  RR  ->  ( ( a  e.  A  |->  -u a )  e.  Fin  <->  dom  ( a  e.  A  |-> 
-u a )  e. 
Fin ) )
139, 12bitr4d 190 . . 3  |-  ( A 
C_  RR  ->  ( A  e.  Fin  <->  ( a  e.  A  |->  -u a
)  e.  Fin )
)
14 reex 7754 . . . . . 6  |-  RR  e.  _V
1514ssex 4065 . . . . 5  |-  ( A 
C_  RR  ->  A  e. 
_V )
16 mptexg 5645 . . . . 5  |-  ( A  e.  _V  ->  (
a  e.  A  |->  -u a )  e.  _V )
1715, 16syl 14 . . . 4  |-  ( A 
C_  RR  ->  ( a  e.  A  |->  -u a
)  e.  _V )
18 eqid 2139 . . . . . 6  |-  ( a  e.  A  |->  -u a
)  =  ( a  e.  A  |->  -u a
)
1918negf1o 8144 . . . . 5  |-  ( A 
C_  RR  ->  ( a  e.  A  |->  -u a
) : A -1-1-onto-> { x  e.  RR  |  -u x  e.  A } )
20 f1of1 5366 . . . . 5  |-  ( ( a  e.  A  |->  -u a ) : A -1-1-onto-> {
x  e.  RR  |  -u x  e.  A }  ->  ( a  e.  A  |-> 
-u a ) : A -1-1-> { x  e.  RR  |  -u x  e.  A } )
2119, 20syl 14 . . . 4  |-  ( A 
C_  RR  ->  ( a  e.  A  |->  -u a
) : A -1-1-> {
x  e.  RR  |  -u x  e.  A }
)
22 f1vrnfibi 6833 . . . 4  |-  ( ( ( a  e.  A  |-> 
-u a )  e. 
_V  /\  ( a  e.  A  |->  -u a
) : A -1-1-> {
x  e.  RR  |  -u x  e.  A }
)  ->  ( (
a  e.  A  |->  -u a )  e.  Fin  <->  ran  ( a  e.  A  |-> 
-u a )  e. 
Fin ) )
2317, 21, 22syl2anc 408 . . 3  |-  ( A 
C_  RR  ->  ( ( a  e.  A  |->  -u a )  e.  Fin  <->  ran  ( a  e.  A  |-> 
-u a )  e. 
Fin ) )
241imp 123 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  a  e.  RR )
252adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  a  e.  A )  /\  a  e.  RR )  ->  -u a  e.  RR )
26 recn 7753 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  RR  ->  a  e.  CC )
2726negnegd 8064 . . . . . . . . . . . . . . . 16  |-  ( a  e.  RR  ->  -u -u a  =  a )
2827eqcomd 2145 . . . . . . . . . . . . . . 15  |-  ( a  e.  RR  ->  a  =  -u -u a )
2928eleq1d 2208 . . . . . . . . . . . . . 14  |-  ( a  e.  RR  ->  (
a  e.  A  <->  -u -u a  e.  A ) )
3029biimpcd 158 . . . . . . . . . . . . 13  |-  ( a  e.  A  ->  (
a  e.  RR  ->  -u -u a  e.  A ) )
3130adantl 275 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  (
a  e.  RR  ->  -u -u a  e.  A ) )
3231imp 123 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  a  e.  A )  /\  a  e.  RR )  ->  -u -u a  e.  A
)
3325, 32jca 304 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  a  e.  A )  /\  a  e.  RR )  ->  ( -u a  e.  RR  /\  -u -u a  e.  A ) )
3424, 33mpdan 417 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  ( -u a  e.  RR  /\  -u -u a  e.  A
) )
35 eleq1 2202 . . . . . . . . . 10  |-  ( n  =  -u a  ->  (
n  e.  RR  <->  -u a  e.  RR ) )
36 negeq 7955 . . . . . . . . . . 11  |-  ( n  =  -u a  ->  -u n  =  -u -u a )
3736eleq1d 2208 . . . . . . . . . 10  |-  ( n  =  -u a  ->  ( -u n  e.  A  <->  -u -u a  e.  A ) )
3835, 37anbi12d 464 . . . . . . . . 9  |-  ( n  =  -u a  ->  (
( n  e.  RR  /\  -u n  e.  A
)  <->  ( -u a  e.  RR  /\  -u -u a  e.  A ) ) )
3934, 38syl5ibrcom 156 . . . . . . . 8  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  (
n  =  -u a  ->  ( n  e.  RR  /\  -u n  e.  A
) ) )
4039rexlimdva 2549 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. a  e.  A  n  =  -u a  ->  (
n  e.  RR  /\  -u n  e.  A ) ) )
41 simprr 521 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  (
n  e.  RR  /\  -u n  e.  A ) )  ->  -u n  e.  A )
42 negeq 7955 . . . . . . . . . . 11  |-  ( a  =  -u n  ->  -u a  =  -u -u n )
4342eqeq2d 2151 . . . . . . . . . 10  |-  ( a  =  -u n  ->  (
n  =  -u a  <->  n  =  -u -u n ) )
4443adantl 275 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  ( n  e.  RR  /\  -u n  e.  A
) )  /\  a  =  -u n )  -> 
( n  =  -u a 
<->  n  =  -u -u n
) )
45 recn 7753 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  n  e.  CC )
46 negneg 8012 . . . . . . . . . . . 12  |-  ( n  e.  CC  ->  -u -u n  =  n )
4746eqcomd 2145 . . . . . . . . . . 11  |-  ( n  e.  CC  ->  n  =  -u -u n )
4845, 47syl 14 . . . . . . . . . 10  |-  ( n  e.  RR  ->  n  =  -u -u n )
4948ad2antrl 481 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  (
n  e.  RR  /\  -u n  e.  A ) )  ->  n  =  -u -u n )
5041, 44, 49rspcedvd 2795 . . . . . . . 8  |-  ( ( A  C_  RR  /\  (
n  e.  RR  /\  -u n  e.  A ) )  ->  E. a  e.  A  n  =  -u a )
5150ex 114 . . . . . . 7  |-  ( A 
C_  RR  ->  ( ( n  e.  RR  /\  -u n  e.  A )  ->  E. a  e.  A  n  =  -u a ) )
5240, 51impbid 128 . . . . . 6  |-  ( A 
C_  RR  ->  ( E. a  e.  A  n  =  -u a  <->  ( n  e.  RR  /\  -u n  e.  A ) ) )
5352abbidv 2257 . . . . 5  |-  ( A 
C_  RR  ->  { n  |  E. a  e.  A  n  =  -u a }  =  { n  |  ( n  e.  RR  /\  -u n  e.  A
) } )
5418rnmpt 4787 . . . . 5  |-  ran  (
a  e.  A  |->  -u a )  =  {
n  |  E. a  e.  A  n  =  -u a }
55 df-rab 2425 . . . . 5  |-  { n  e.  RR  |  -u n  e.  A }  =  {
n  |  ( n  e.  RR  /\  -u n  e.  A ) }
5653, 54, 553eqtr4g 2197 . . . 4  |-  ( A 
C_  RR  ->  ran  (
a  e.  A  |->  -u a )  =  {
n  e.  RR  |  -u n  e.  A }
)
5756eleq1d 2208 . . 3  |-  ( A 
C_  RR  ->  ( ran  ( a  e.  A  |-> 
-u a )  e. 
Fin 
<->  { n  e.  RR  |  -u n  e.  A }  e.  Fin )
)
5813, 23, 573bitrd 213 . 2  |-  ( A 
C_  RR  ->  ( A  e.  Fin  <->  { n  e.  RR  |  -u n  e.  A }  e.  Fin ) )
5958biimpa 294 1  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  { n  e.  RR  |  -u n  e.  A }  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071    |-> cmpt 3989   dom cdm 4539   ran crn 4540   Fun wfun 5117   -1-1->wf1 5120   -1-1-onto->wf1o 5122   Fincfn 6634   CCcc 7618   RRcr 7619   -ucneg 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637  df-sub 7935  df-neg 7936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator