| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negfi | Unicode version | ||
| Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.) |
| Ref | Expression |
|---|---|
| negfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . . . . . . . . 10
| |
| 2 | renegcl 8335 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | syl6 33 |
. . . . . . . . 9
|
| 4 | 3 | imp 124 |
. . . . . . . 8
|
| 5 | 4 | ralrimiva 2579 |
. . . . . . 7
|
| 6 | dmmptg 5181 |
. . . . . . 7
| |
| 7 | 5, 6 | syl 14 |
. . . . . 6
|
| 8 | 7 | eqcomd 2211 |
. . . . 5
|
| 9 | 8 | eleq1d 2274 |
. . . 4
|
| 10 | funmpt 5310 |
. . . . 5
| |
| 11 | fundmfibi 7042 |
. . . . 5
| |
| 12 | 10, 11 | mp1i 10 |
. . . 4
|
| 13 | 9, 12 | bitr4d 191 |
. . 3
|
| 14 | reex 8061 |
. . . . . 6
| |
| 15 | 14 | ssex 4182 |
. . . . 5
|
| 16 | mptexg 5811 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | eqid 2205 |
. . . . . 6
| |
| 19 | 18 | negf1o 8456 |
. . . . 5
|
| 20 | f1of1 5523 |
. . . . 5
| |
| 21 | 19, 20 | syl 14 |
. . . 4
|
| 22 | f1vrnfibi 7049 |
. . . 4
| |
| 23 | 17, 21, 22 | syl2anc 411 |
. . 3
|
| 24 | 1 | imp 124 |
. . . . . . . . . 10
|
| 25 | 2 | adantl 277 |
. . . . . . . . . . 11
|
| 26 | recn 8060 |
. . . . . . . . . . . . . . . . 17
| |
| 27 | 26 | negnegd 8376 |
. . . . . . . . . . . . . . . 16
|
| 28 | 27 | eqcomd 2211 |
. . . . . . . . . . . . . . 15
|
| 29 | 28 | eleq1d 2274 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | biimpcd 159 |
. . . . . . . . . . . . 13
|
| 31 | 30 | adantl 277 |
. . . . . . . . . . . 12
|
| 32 | 31 | imp 124 |
. . . . . . . . . . 11
|
| 33 | 25, 32 | jca 306 |
. . . . . . . . . 10
|
| 34 | 24, 33 | mpdan 421 |
. . . . . . . . 9
|
| 35 | eleq1 2268 |
. . . . . . . . . 10
| |
| 36 | negeq 8267 |
. . . . . . . . . . 11
| |
| 37 | 36 | eleq1d 2274 |
. . . . . . . . . 10
|
| 38 | 35, 37 | anbi12d 473 |
. . . . . . . . 9
|
| 39 | 34, 38 | syl5ibrcom 157 |
. . . . . . . 8
|
| 40 | 39 | rexlimdva 2623 |
. . . . . . 7
|
| 41 | simprr 531 |
. . . . . . . . 9
| |
| 42 | negeq 8267 |
. . . . . . . . . . 11
| |
| 43 | 42 | eqeq2d 2217 |
. . . . . . . . . 10
|
| 44 | 43 | adantl 277 |
. . . . . . . . 9
|
| 45 | recn 8060 |
. . . . . . . . . . 11
| |
| 46 | negneg 8324 |
. . . . . . . . . . . 12
| |
| 47 | 46 | eqcomd 2211 |
. . . . . . . . . . 11
|
| 48 | 45, 47 | syl 14 |
. . . . . . . . . 10
|
| 49 | 48 | ad2antrl 490 |
. . . . . . . . 9
|
| 50 | 41, 44, 49 | rspcedvd 2883 |
. . . . . . . 8
|
| 51 | 50 | ex 115 |
. . . . . . 7
|
| 52 | 40, 51 | impbid 129 |
. . . . . 6
|
| 53 | 52 | abbidv 2323 |
. . . . 5
|
| 54 | 18 | rnmpt 4927 |
. . . . 5
|
| 55 | df-rab 2493 |
. . . . 5
| |
| 56 | 53, 54, 55 | 3eqtr4g 2263 |
. . . 4
|
| 57 | 56 | eleq1d 2274 |
. . 3
|
| 58 | 13, 23, 57 | 3bitrd 214 |
. 2
|
| 59 | 58 | biimpa 296 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-1o 6504 df-er 6622 df-en 6830 df-fin 6832 df-sub 8247 df-neg 8248 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |