| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negfi | Unicode version | ||
| Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.) |
| Ref | Expression |
|---|---|
| negfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. . . . . . . . . 10
| |
| 2 | renegcl 8368 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | syl6 33 |
. . . . . . . . 9
|
| 4 | 3 | imp 124 |
. . . . . . . 8
|
| 5 | 4 | ralrimiva 2581 |
. . . . . . 7
|
| 6 | dmmptg 5199 |
. . . . . . 7
| |
| 7 | 5, 6 | syl 14 |
. . . . . 6
|
| 8 | 7 | eqcomd 2213 |
. . . . 5
|
| 9 | 8 | eleq1d 2276 |
. . . 4
|
| 10 | funmpt 5328 |
. . . . 5
| |
| 11 | fundmfibi 7066 |
. . . . 5
| |
| 12 | 10, 11 | mp1i 10 |
. . . 4
|
| 13 | 9, 12 | bitr4d 191 |
. . 3
|
| 14 | reex 8094 |
. . . . . 6
| |
| 15 | 14 | ssex 4197 |
. . . . 5
|
| 16 | mptexg 5832 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | eqid 2207 |
. . . . . 6
| |
| 19 | 18 | negf1o 8489 |
. . . . 5
|
| 20 | f1of1 5543 |
. . . . 5
| |
| 21 | 19, 20 | syl 14 |
. . . 4
|
| 22 | f1vrnfibi 7073 |
. . . 4
| |
| 23 | 17, 21, 22 | syl2anc 411 |
. . 3
|
| 24 | 1 | imp 124 |
. . . . . . . . . 10
|
| 25 | 2 | adantl 277 |
. . . . . . . . . . 11
|
| 26 | recn 8093 |
. . . . . . . . . . . . . . . . 17
| |
| 27 | 26 | negnegd 8409 |
. . . . . . . . . . . . . . . 16
|
| 28 | 27 | eqcomd 2213 |
. . . . . . . . . . . . . . 15
|
| 29 | 28 | eleq1d 2276 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | biimpcd 159 |
. . . . . . . . . . . . 13
|
| 31 | 30 | adantl 277 |
. . . . . . . . . . . 12
|
| 32 | 31 | imp 124 |
. . . . . . . . . . 11
|
| 33 | 25, 32 | jca 306 |
. . . . . . . . . 10
|
| 34 | 24, 33 | mpdan 421 |
. . . . . . . . 9
|
| 35 | eleq1 2270 |
. . . . . . . . . 10
| |
| 36 | negeq 8300 |
. . . . . . . . . . 11
| |
| 37 | 36 | eleq1d 2276 |
. . . . . . . . . 10
|
| 38 | 35, 37 | anbi12d 473 |
. . . . . . . . 9
|
| 39 | 34, 38 | syl5ibrcom 157 |
. . . . . . . 8
|
| 40 | 39 | rexlimdva 2625 |
. . . . . . 7
|
| 41 | simprr 531 |
. . . . . . . . 9
| |
| 42 | negeq 8300 |
. . . . . . . . . . 11
| |
| 43 | 42 | eqeq2d 2219 |
. . . . . . . . . 10
|
| 44 | 43 | adantl 277 |
. . . . . . . . 9
|
| 45 | recn 8093 |
. . . . . . . . . . 11
| |
| 46 | negneg 8357 |
. . . . . . . . . . . 12
| |
| 47 | 46 | eqcomd 2213 |
. . . . . . . . . . 11
|
| 48 | 45, 47 | syl 14 |
. . . . . . . . . 10
|
| 49 | 48 | ad2antrl 490 |
. . . . . . . . 9
|
| 50 | 41, 44, 49 | rspcedvd 2890 |
. . . . . . . 8
|
| 51 | 50 | ex 115 |
. . . . . . 7
|
| 52 | 40, 51 | impbid 129 |
. . . . . 6
|
| 53 | 52 | abbidv 2325 |
. . . . 5
|
| 54 | 18 | rnmpt 4945 |
. . . . 5
|
| 55 | df-rab 2495 |
. . . . 5
| |
| 56 | 53, 54, 55 | 3eqtr4g 2265 |
. . . 4
|
| 57 | 56 | eleq1d 2276 |
. . 3
|
| 58 | 13, 23, 57 | 3bitrd 214 |
. 2
|
| 59 | 58 | biimpa 296 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-1o 6525 df-er 6643 df-en 6851 df-fin 6853 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |