ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani Unicode version

Theorem mpani 430
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1  |-  ps
mpani.2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
mpani  |-  ( ph  ->  ( ch  ->  th )
)

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3  |-  ps
21a1i 9 . 2  |-  ( ph  ->  ps )
3 mpani.2 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
42, 3mpand 429 1  |-  ( ph  ->  ( ch  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mp2ani  432  mulgt1  9006  recgt1i  9041  recreclt  9043  nngt0  9131  nnrecgt0  9144  elnnnn0c  9410  elnnz1  9465  recnz  9536  uz3m2nn  9764  ledivge1le  9918  expubnd  10813  expnbnd  10880  expnlbnd  10881  sin02gt0  12270  oddge22np1  12387  dvdsnprmd  12642  reeff1olem  15439  sinq12gt0  15498  logdivlti  15549  gausslemma2dlem4  15737
  Copyright terms: Public domain W3C validator