ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani Unicode version

Theorem mpani 430
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1  |-  ps
mpani.2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
mpani  |-  ( ph  ->  ( ch  ->  th )
)

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3  |-  ps
21a1i 9 . 2  |-  ( ph  ->  ps )
3 mpani.2 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
42, 3mpand 429 1  |-  ( ph  ->  ( ch  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mp2ani  432  mulgt1  8936  recgt1i  8971  recreclt  8973  nngt0  9061  nnrecgt0  9074  elnnnn0c  9340  elnnz1  9395  recnz  9466  uz3m2nn  9694  ledivge1le  9848  expubnd  10741  expnbnd  10808  expnlbnd  10809  sin02gt0  12075  oddge22np1  12192  dvdsnprmd  12447  reeff1olem  15243  sinq12gt0  15302  logdivlti  15353  gausslemma2dlem4  15541
  Copyright terms: Public domain W3C validator