ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani Unicode version

Theorem mpani 430
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1  |-  ps
mpani.2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
mpani  |-  ( ph  ->  ( ch  ->  th )
)

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3  |-  ps
21a1i 9 . 2  |-  ( ph  ->  ps )
3 mpani.2 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
42, 3mpand 429 1  |-  ( ph  ->  ( ch  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mp2ani  432  mulgt1  8971  recgt1i  9006  recreclt  9008  nngt0  9096  nnrecgt0  9109  elnnnn0c  9375  elnnz1  9430  recnz  9501  uz3m2nn  9729  ledivge1le  9883  expubnd  10778  expnbnd  10845  expnlbnd  10846  sin02gt0  12190  oddge22np1  12307  dvdsnprmd  12562  reeff1olem  15358  sinq12gt0  15417  logdivlti  15468  gausslemma2dlem4  15656
  Copyright terms: Public domain W3C validator