ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani Unicode version

Theorem mpani 427
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1  |-  ps
mpani.2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
mpani  |-  ( ph  ->  ( ch  ->  th )
)

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3  |-  ps
21a1i 9 . 2  |-  ( ph  ->  ps )
3 mpani.2 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
42, 3mpand 426 1  |-  ( ph  ->  ( ch  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mp2ani  429  mulgt1  8717  recgt1i  8752  recreclt  8754  nngt0  8841  nnrecgt0  8854  elnnnn0c  9118  elnnz1  9173  recnz  9240  uz3m2nn  9467  ledivge1le  9615  expubnd  10458  expnbnd  10523  expnlbnd  10524  sin02gt0  11642  oddge22np1  11753  dvdsnprmd  11982  reeff1olem  13052  sinq12gt0  13111  logdivlti  13162
  Copyright terms: Public domain W3C validator