ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnz1 Unicode version

Theorem elnnz1 9366
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elnnz1  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  1  <_  N ) )

Proof of Theorem elnnz1
StepHypRef Expression
1 nnz 9362 . . 3  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 nnge1 9030 . . 3  |-  ( N  e.  NN  ->  1  <_  N )
31, 2jca 306 . 2  |-  ( N  e.  NN  ->  ( N  e.  ZZ  /\  1  <_  N ) )
4 0lt1 8170 . . . . 5  |-  0  <  1
5 zre 9347 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  RR )
6 0re 8043 . . . . . . 7  |-  0  e.  RR
7 1re 8042 . . . . . . 7  |-  1  e.  RR
8 ltletr 8133 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
96, 7, 8mp3an12 1338 . . . . . 6  |-  ( N  e.  RR  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
105, 9syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
114, 10mpani 430 . . . 4  |-  ( N  e.  ZZ  ->  (
1  <_  N  ->  0  <  N ) )
1211imdistani 445 . . 3  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
( N  e.  ZZ  /\  0  <  N ) )
13 elnnz 9353 . . 3  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
1412, 13sylibr 134 . 2  |-  ( ( N  e.  ZZ  /\  1  <_  N )  ->  N  e.  NN )
153, 14impbii 126 1  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  1  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4034   RRcr 7895   0cc0 7896   1c1 7897    < clt 8078    <_ cle 8079   NNcn 9007   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-z 9344
This theorem is referenced by:  nnzrab  9367  znnnlt1  9391  eluz2b2  9694  elfznn  10146  flqge1nn  10401  resqrexlemdecn  11194  cvgratz  11714  prmdc  12323  4sqlem11  12595  oddennn  12634  nninfdclemlt  12693  psrbaglesuppg  14302  zabsle1  15324  gausslemma2dlem1a  15383  gausslemma2dlem4  15389
  Copyright terms: Public domain W3C validator