ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1olem Unicode version

Theorem reeff1olem 15445
Description: Lemma for reeff1o 15447. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Distinct variable group:    x, U

Proof of Theorem reeff1olem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 10155 . . 3  |-  ( 0 (,) U )  C_  ( 0 [,] U
)
2 0re 8146 . . . . 5  |-  0  e.  RR
3 iccssre 10151 . . . . 5  |-  ( ( 0  e.  RR  /\  U  e.  RR )  ->  ( 0 [,] U
)  C_  RR )
42, 3mpan 424 . . . 4  |-  ( U  e.  RR  ->  (
0 [,] U ) 
C_  RR )
54adantr 276 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  RR )
61, 5sstrid 3235 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 (,) U
)  C_  RR )
72a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  e.  RR )
8 simpl 109 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR )
9 0lt1 8273 . . . . 5  |-  0  <  1
10 1re 8145 . . . . . 6  |-  1  e.  RR
11 lttr 8220 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  U  e.  RR )  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
122, 10, 11mp3an12 1361 . . . . 5  |-  ( U  e.  RR  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
139, 12mpani 430 . . . 4  |-  ( U  e.  RR  ->  (
1  <  U  ->  0  <  U ) )
1413imp 124 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  <  U )
15 ax-resscn 8091 . . . 4  |-  RR  C_  CC
165, 15sstrdi 3236 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  CC )
17 efcn 15442 . . . 4  |-  exp  e.  ( CC -cn-> CC )
1817a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  exp  e.  ( CC -cn-> CC ) )
19 ssel2 3219 . . . . 5  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  y  e.  RR )
2019reefcld 12180 . . . 4  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  ( exp `  y )  e.  RR )
215, 20sylan 283 . . 3  |-  ( ( ( U  e.  RR  /\  1  <  U )  /\  y  e.  ( 0 [,] U ) )  ->  ( exp `  y )  e.  RR )
22 ef0 12183 . . . . 5  |-  ( exp `  0 )  =  1
23 simpr 110 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
1  <  U )
2422, 23eqbrtrid 4118 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  0
)  <  U )
25 peano2re 8282 . . . . . 6  |-  ( U  e.  RR  ->  ( U  +  1 )  e.  RR )
2625adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  e.  RR )
27 reefcl 12179 . . . . . 6  |-  ( U  e.  RR  ->  ( exp `  U )  e.  RR )
2827adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  U
)  e.  RR )
29 ltp1 8991 . . . . . 6  |-  ( U  e.  RR  ->  U  <  ( U  +  1 ) )
3029adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( U  + 
1 ) )
318recnd 8175 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  CC )
32 ax-1cn 8092 . . . . . . 7  |-  1  e.  CC
33 addcom 8283 . . . . . . 7  |-  ( ( U  e.  CC  /\  1  e.  CC )  ->  ( U  +  1 )  =  ( 1  +  U ) )
3431, 32, 33sylancl 413 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  =  ( 1  +  U ) )
358, 14elrpd 9889 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR+ )
36 efgt1p 12207 . . . . . . 7  |-  ( U  e.  RR+  ->  ( 1  +  U )  < 
( exp `  U
) )
3735, 36syl 14 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 1  +  U
)  <  ( exp `  U ) )
3834, 37eqbrtrd 4105 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  <  ( exp `  U ) )
398, 26, 28, 30, 38lttrd 8272 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( exp `  U
) )
4024, 39jca 306 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( ( exp `  0
)  <  U  /\  U  <  ( exp `  U
) ) )
41 simplll 533 . . . . . . 7  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  U  e.  RR )
422, 41, 3sylancr 414 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( 0 [,] U )  C_  RR )
43 simplr 528 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  ( 0 [,] U ) )
4442, 43sseldd 3225 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  RR )
45 simprl 529 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  ( 0 [,] U ) )
4642, 45sseldd 3225 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  RR )
4744, 46jca 306 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( y  e.  RR  /\  z  e.  RR ) )
48 simprr 531 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  <  z
)
49 efltim 12209 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <  z  ->  ( exp `  y
)  <  ( exp `  z ) ) )
5047, 48, 49sylc 62 . . 3  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( exp `  y
)  <  ( exp `  z ) )
517, 8, 8, 14, 16, 18, 21, 40, 50ivthinc 15317 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  (
0 (,) U ) ( exp `  x
)  =  U )
52 ssrexv 3289 . 2  |-  ( ( 0 (,) U ) 
C_  RR  ->  ( E. x  e.  ( 0 (,) U ) ( exp `  x )  =  U  ->  E. x  e.  RR  ( exp `  x
)  =  U ) )
536, 51, 52sylc 62 1  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509    C_ wss 3197   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181   RR+crp 9849   (,)cioo 10084   [,]cicc 10087   expce 12153   -cn->ccncf 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-pre-suploc 8120  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-ico 10090  df-icc 10091  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  reeff1oleme  15446  reeff1o  15447
  Copyright terms: Public domain W3C validator