ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1olem Unicode version

Theorem reeff1olem 14488
Description: Lemma for reeff1o 14490. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Distinct variable group:    x, U

Proof of Theorem reeff1olem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 9973 . . 3  |-  ( 0 (,) U )  C_  ( 0 [,] U
)
2 0re 7971 . . . . 5  |-  0  e.  RR
3 iccssre 9969 . . . . 5  |-  ( ( 0  e.  RR  /\  U  e.  RR )  ->  ( 0 [,] U
)  C_  RR )
42, 3mpan 424 . . . 4  |-  ( U  e.  RR  ->  (
0 [,] U ) 
C_  RR )
54adantr 276 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  RR )
61, 5sstrid 3178 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 (,) U
)  C_  RR )
72a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  e.  RR )
8 simpl 109 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR )
9 0lt1 8098 . . . . 5  |-  0  <  1
10 1re 7970 . . . . . 6  |-  1  e.  RR
11 lttr 8045 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  U  e.  RR )  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
122, 10, 11mp3an12 1337 . . . . 5  |-  ( U  e.  RR  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
139, 12mpani 430 . . . 4  |-  ( U  e.  RR  ->  (
1  <  U  ->  0  <  U ) )
1413imp 124 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  <  U )
15 ax-resscn 7917 . . . 4  |-  RR  C_  CC
165, 15sstrdi 3179 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  CC )
17 efcn 14485 . . . 4  |-  exp  e.  ( CC -cn-> CC )
1817a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  exp  e.  ( CC -cn-> CC ) )
19 ssel2 3162 . . . . 5  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  y  e.  RR )
2019reefcld 11691 . . . 4  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  ( exp `  y )  e.  RR )
215, 20sylan 283 . . 3  |-  ( ( ( U  e.  RR  /\  1  <  U )  /\  y  e.  ( 0 [,] U ) )  ->  ( exp `  y )  e.  RR )
22 ef0 11694 . . . . 5  |-  ( exp `  0 )  =  1
23 simpr 110 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
1  <  U )
2422, 23eqbrtrid 4050 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  0
)  <  U )
25 peano2re 8107 . . . . . 6  |-  ( U  e.  RR  ->  ( U  +  1 )  e.  RR )
2625adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  e.  RR )
27 reefcl 11690 . . . . . 6  |-  ( U  e.  RR  ->  ( exp `  U )  e.  RR )
2827adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  U
)  e.  RR )
29 ltp1 8815 . . . . . 6  |-  ( U  e.  RR  ->  U  <  ( U  +  1 ) )
3029adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( U  + 
1 ) )
318recnd 8000 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  CC )
32 ax-1cn 7918 . . . . . . 7  |-  1  e.  CC
33 addcom 8108 . . . . . . 7  |-  ( ( U  e.  CC  /\  1  e.  CC )  ->  ( U  +  1 )  =  ( 1  +  U ) )
3431, 32, 33sylancl 413 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  =  ( 1  +  U ) )
358, 14elrpd 9707 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR+ )
36 efgt1p 11718 . . . . . . 7  |-  ( U  e.  RR+  ->  ( 1  +  U )  < 
( exp `  U
) )
3735, 36syl 14 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 1  +  U
)  <  ( exp `  U ) )
3834, 37eqbrtrd 4037 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  <  ( exp `  U ) )
398, 26, 28, 30, 38lttrd 8097 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( exp `  U
) )
4024, 39jca 306 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( ( exp `  0
)  <  U  /\  U  <  ( exp `  U
) ) )
41 simplll 533 . . . . . . 7  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  U  e.  RR )
422, 41, 3sylancr 414 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( 0 [,] U )  C_  RR )
43 simplr 528 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  ( 0 [,] U ) )
4442, 43sseldd 3168 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  RR )
45 simprl 529 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  ( 0 [,] U ) )
4642, 45sseldd 3168 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  RR )
4744, 46jca 306 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( y  e.  RR  /\  z  e.  RR ) )
48 simprr 531 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  <  z
)
49 efltim 11720 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <  z  ->  ( exp `  y
)  <  ( exp `  z ) ) )
5047, 48, 49sylc 62 . . 3  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( exp `  y
)  <  ( exp `  z ) )
517, 8, 8, 14, 16, 18, 21, 40, 50ivthinc 14417 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  (
0 (,) U ) ( exp `  x
)  =  U )
52 ssrexv 3232 . 2  |-  ( ( 0 (,) U ) 
C_  RR  ->  ( E. x  e.  ( 0 (,) U ) ( exp `  x )  =  U  ->  E. x  e.  RR  ( exp `  x
)  =  U ) )
536, 51, 52sylc 62 1  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   E.wrex 2466    C_ wss 3141   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   CCcc 7823   RRcr 7824   0cc0 7825   1c1 7826    + caddc 7828    < clt 8006   RR+crp 9667   (,)cioo 9902   [,]cicc 9905   expce 11664   -cn->ccncf 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945  ax-pre-suploc 7946  ax-addf 7947  ax-mulf 7948
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-of 6097  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-map 6664  df-pm 6665  df-en 6755  df-dom 6756  df-fin 6757  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-xneg 9786  df-xadd 9787  df-ioo 9906  df-ico 9908  df-icc 9909  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-fac 10720  df-bc 10742  df-ihash 10770  df-shft 10838  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376  df-ef 11670  df-rest 12708  df-topgen 12727  df-psmet 13729  df-xmet 13730  df-met 13731  df-bl 13732  df-mopn 13733  df-top 13794  df-topon 13807  df-bases 13839  df-ntr 13892  df-cn 13984  df-cnp 13985  df-tx 14049  df-cncf 14354  df-limced 14421  df-dvap 14422
This theorem is referenced by:  reeff1oleme  14489  reeff1o  14490
  Copyright terms: Public domain W3C validator