ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1olem Unicode version

Theorem reeff1olem 13332
Description: Lemma for reeff1o 13334. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Distinct variable group:    x, U

Proof of Theorem reeff1olem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 9895 . . 3  |-  ( 0 (,) U )  C_  ( 0 [,] U
)
2 0re 7899 . . . . 5  |-  0  e.  RR
3 iccssre 9891 . . . . 5  |-  ( ( 0  e.  RR  /\  U  e.  RR )  ->  ( 0 [,] U
)  C_  RR )
42, 3mpan 421 . . . 4  |-  ( U  e.  RR  ->  (
0 [,] U ) 
C_  RR )
54adantr 274 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  RR )
61, 5sstrid 3153 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 (,) U
)  C_  RR )
72a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  e.  RR )
8 simpl 108 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR )
9 0lt1 8025 . . . . 5  |-  0  <  1
10 1re 7898 . . . . . 6  |-  1  e.  RR
11 lttr 7972 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  U  e.  RR )  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
122, 10, 11mp3an12 1317 . . . . 5  |-  ( U  e.  RR  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
139, 12mpani 427 . . . 4  |-  ( U  e.  RR  ->  (
1  <  U  ->  0  <  U ) )
1413imp 123 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  <  U )
15 ax-resscn 7845 . . . 4  |-  RR  C_  CC
165, 15sstrdi 3154 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  CC )
17 efcn 13329 . . . 4  |-  exp  e.  ( CC -cn-> CC )
1817a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  exp  e.  ( CC -cn-> CC ) )
19 ssel2 3137 . . . . 5  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  y  e.  RR )
2019reefcld 11610 . . . 4  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  ( exp `  y )  e.  RR )
215, 20sylan 281 . . 3  |-  ( ( ( U  e.  RR  /\  1  <  U )  /\  y  e.  ( 0 [,] U ) )  ->  ( exp `  y )  e.  RR )
22 ef0 11613 . . . . 5  |-  ( exp `  0 )  =  1
23 simpr 109 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
1  <  U )
2422, 23eqbrtrid 4017 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  0
)  <  U )
25 peano2re 8034 . . . . . 6  |-  ( U  e.  RR  ->  ( U  +  1 )  e.  RR )
2625adantr 274 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  e.  RR )
27 reefcl 11609 . . . . . 6  |-  ( U  e.  RR  ->  ( exp `  U )  e.  RR )
2827adantr 274 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  U
)  e.  RR )
29 ltp1 8739 . . . . . 6  |-  ( U  e.  RR  ->  U  <  ( U  +  1 ) )
3029adantr 274 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( U  + 
1 ) )
318recnd 7927 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  CC )
32 ax-1cn 7846 . . . . . . 7  |-  1  e.  CC
33 addcom 8035 . . . . . . 7  |-  ( ( U  e.  CC  /\  1  e.  CC )  ->  ( U  +  1 )  =  ( 1  +  U ) )
3431, 32, 33sylancl 410 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  =  ( 1  +  U ) )
358, 14elrpd 9629 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR+ )
36 efgt1p 11637 . . . . . . 7  |-  ( U  e.  RR+  ->  ( 1  +  U )  < 
( exp `  U
) )
3735, 36syl 14 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 1  +  U
)  <  ( exp `  U ) )
3834, 37eqbrtrd 4004 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  <  ( exp `  U ) )
398, 26, 28, 30, 38lttrd 8024 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( exp `  U
) )
4024, 39jca 304 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( ( exp `  0
)  <  U  /\  U  <  ( exp `  U
) ) )
41 simplll 523 . . . . . . 7  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  U  e.  RR )
422, 41, 3sylancr 411 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( 0 [,] U )  C_  RR )
43 simplr 520 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  ( 0 [,] U ) )
4442, 43sseldd 3143 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  RR )
45 simprl 521 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  ( 0 [,] U ) )
4642, 45sseldd 3143 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  RR )
4744, 46jca 304 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( y  e.  RR  /\  z  e.  RR ) )
48 simprr 522 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  <  z
)
49 efltim 11639 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <  z  ->  ( exp `  y
)  <  ( exp `  z ) ) )
5047, 48, 49sylc 62 . . 3  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( exp `  y
)  <  ( exp `  z ) )
517, 8, 8, 14, 16, 18, 21, 40, 50ivthinc 13261 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  (
0 (,) U ) ( exp `  x
)  =  U )
52 ssrexv 3207 . 2  |-  ( ( 0 (,) U ) 
C_  RR  ->  ( E. x  e.  ( 0 (,) U ) ( exp `  x )  =  U  ->  E. x  e.  RR  ( exp `  x
)  =  U ) )
536, 51, 52sylc 62 1  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    < clt 7933   RR+crp 9589   (,)cioo 9824   [,]cicc 9827   expce 11583   -cn->ccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by:  reeff1oleme  13333  reeff1o  13334
  Copyright terms: Public domain W3C validator