ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1olem Unicode version

Theorem reeff1olem 15017
Description: Lemma for reeff1o 15019. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Distinct variable group:    x, U

Proof of Theorem reeff1olem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 10036 . . 3  |-  ( 0 (,) U )  C_  ( 0 [,] U
)
2 0re 8028 . . . . 5  |-  0  e.  RR
3 iccssre 10032 . . . . 5  |-  ( ( 0  e.  RR  /\  U  e.  RR )  ->  ( 0 [,] U
)  C_  RR )
42, 3mpan 424 . . . 4  |-  ( U  e.  RR  ->  (
0 [,] U ) 
C_  RR )
54adantr 276 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  RR )
61, 5sstrid 3195 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 (,) U
)  C_  RR )
72a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  e.  RR )
8 simpl 109 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR )
9 0lt1 8155 . . . . 5  |-  0  <  1
10 1re 8027 . . . . . 6  |-  1  e.  RR
11 lttr 8102 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  U  e.  RR )  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
122, 10, 11mp3an12 1338 . . . . 5  |-  ( U  e.  RR  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
139, 12mpani 430 . . . 4  |-  ( U  e.  RR  ->  (
1  <  U  ->  0  <  U ) )
1413imp 124 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  <  U )
15 ax-resscn 7973 . . . 4  |-  RR  C_  CC
165, 15sstrdi 3196 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  CC )
17 efcn 15014 . . . 4  |-  exp  e.  ( CC -cn-> CC )
1817a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  exp  e.  ( CC -cn-> CC ) )
19 ssel2 3179 . . . . 5  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  y  e.  RR )
2019reefcld 11836 . . . 4  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  ( exp `  y )  e.  RR )
215, 20sylan 283 . . 3  |-  ( ( ( U  e.  RR  /\  1  <  U )  /\  y  e.  ( 0 [,] U ) )  ->  ( exp `  y )  e.  RR )
22 ef0 11839 . . . . 5  |-  ( exp `  0 )  =  1
23 simpr 110 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
1  <  U )
2422, 23eqbrtrid 4069 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  0
)  <  U )
25 peano2re 8164 . . . . . 6  |-  ( U  e.  RR  ->  ( U  +  1 )  e.  RR )
2625adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  e.  RR )
27 reefcl 11835 . . . . . 6  |-  ( U  e.  RR  ->  ( exp `  U )  e.  RR )
2827adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  U
)  e.  RR )
29 ltp1 8873 . . . . . 6  |-  ( U  e.  RR  ->  U  <  ( U  +  1 ) )
3029adantr 276 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( U  + 
1 ) )
318recnd 8057 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  CC )
32 ax-1cn 7974 . . . . . . 7  |-  1  e.  CC
33 addcom 8165 . . . . . . 7  |-  ( ( U  e.  CC  /\  1  e.  CC )  ->  ( U  +  1 )  =  ( 1  +  U ) )
3431, 32, 33sylancl 413 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  =  ( 1  +  U ) )
358, 14elrpd 9770 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR+ )
36 efgt1p 11863 . . . . . . 7  |-  ( U  e.  RR+  ->  ( 1  +  U )  < 
( exp `  U
) )
3735, 36syl 14 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 1  +  U
)  <  ( exp `  U ) )
3834, 37eqbrtrd 4056 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  <  ( exp `  U ) )
398, 26, 28, 30, 38lttrd 8154 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( exp `  U
) )
4024, 39jca 306 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( ( exp `  0
)  <  U  /\  U  <  ( exp `  U
) ) )
41 simplll 533 . . . . . . 7  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  U  e.  RR )
422, 41, 3sylancr 414 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( 0 [,] U )  C_  RR )
43 simplr 528 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  ( 0 [,] U ) )
4442, 43sseldd 3185 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  RR )
45 simprl 529 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  ( 0 [,] U ) )
4642, 45sseldd 3185 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  RR )
4744, 46jca 306 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( y  e.  RR  /\  z  e.  RR ) )
48 simprr 531 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  <  z
)
49 efltim 11865 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <  z  ->  ( exp `  y
)  <  ( exp `  z ) ) )
5047, 48, 49sylc 62 . . 3  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( exp `  y
)  <  ( exp `  z ) )
517, 8, 8, 14, 16, 18, 21, 40, 50ivthinc 14889 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  (
0 (,) U ) ( exp `  x
)  =  U )
52 ssrexv 3249 . 2  |-  ( ( 0 (,) U ) 
C_  RR  ->  ( E. x  e.  ( 0 (,) U ) ( exp `  x )  =  U  ->  E. x  e.  RR  ( exp `  x
)  =  U ) )
536, 51, 52sylc 62 1  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   CCcc 7879   RRcr 7880   0cc0 7881   1c1 7882    + caddc 7884    < clt 8063   RR+crp 9730   (,)cioo 9965   [,]cicc 9968   expce 11809   -cn->ccncf 14816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001  ax-pre-suploc 8002  ax-addf 8003  ax-mulf 8004
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-of 6136  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-oadd 6479  df-er 6593  df-map 6710  df-pm 6711  df-en 6801  df-dom 6802  df-fin 6803  df-sup 7051  df-inf 7052  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-xneg 9849  df-xadd 9850  df-ioo 9969  df-ico 9971  df-icc 9972  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-exp 10633  df-fac 10820  df-bc 10842  df-ihash 10870  df-shft 10982  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521  df-ef 11815  df-rest 12922  df-topgen 12941  df-psmet 14109  df-xmet 14110  df-met 14111  df-bl 14112  df-mopn 14113  df-top 14244  df-topon 14257  df-bases 14289  df-ntr 14342  df-cn 14434  df-cnp 14435  df-tx 14499  df-cncf 14817  df-limced 14902  df-dvap 14903
This theorem is referenced by:  reeff1oleme  15018  reeff1o  15019
  Copyright terms: Public domain W3C validator