ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1olem Unicode version

Theorem reeff1olem 12900
Description: Lemma for reeff1o 12902. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
reeff1olem  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Distinct variable group:    x, U

Proof of Theorem reeff1olem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 9772 . . 3  |-  ( 0 (,) U )  C_  ( 0 [,] U
)
2 0re 7790 . . . . 5  |-  0  e.  RR
3 iccssre 9768 . . . . 5  |-  ( ( 0  e.  RR  /\  U  e.  RR )  ->  ( 0 [,] U
)  C_  RR )
42, 3mpan 421 . . . 4  |-  ( U  e.  RR  ->  (
0 [,] U ) 
C_  RR )
54adantr 274 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  RR )
61, 5sstrid 3113 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 (,) U
)  C_  RR )
72a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  e.  RR )
8 simpl 108 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR )
9 0lt1 7913 . . . . 5  |-  0  <  1
10 1re 7789 . . . . . 6  |-  1  e.  RR
11 lttr 7862 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  U  e.  RR )  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
122, 10, 11mp3an12 1306 . . . . 5  |-  ( U  e.  RR  ->  (
( 0  <  1  /\  1  <  U )  ->  0  <  U
) )
139, 12mpani 427 . . . 4  |-  ( U  e.  RR  ->  (
1  <  U  ->  0  <  U ) )
1413imp 123 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
0  <  U )
15 ax-resscn 7736 . . . 4  |-  RR  C_  CC
165, 15sstrdi 3114 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 0 [,] U
)  C_  CC )
17 efcn 12897 . . . 4  |-  exp  e.  ( CC -cn-> CC )
1817a1i 9 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  ->  exp  e.  ( CC -cn-> CC ) )
19 ssel2 3097 . . . . 5  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  y  e.  RR )
2019reefcld 11412 . . . 4  |-  ( ( ( 0 [,] U
)  C_  RR  /\  y  e.  ( 0 [,] U
) )  ->  ( exp `  y )  e.  RR )
215, 20sylan 281 . . 3  |-  ( ( ( U  e.  RR  /\  1  <  U )  /\  y  e.  ( 0 [,] U ) )  ->  ( exp `  y )  e.  RR )
22 ef0 11415 . . . . 5  |-  ( exp `  0 )  =  1
23 simpr 109 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
1  <  U )
2422, 23eqbrtrid 3971 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  0
)  <  U )
25 peano2re 7922 . . . . . 6  |-  ( U  e.  RR  ->  ( U  +  1 )  e.  RR )
2625adantr 274 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  e.  RR )
27 reefcl 11411 . . . . . 6  |-  ( U  e.  RR  ->  ( exp `  U )  e.  RR )
2827adantr 274 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( exp `  U
)  e.  RR )
29 ltp1 8626 . . . . . 6  |-  ( U  e.  RR  ->  U  <  ( U  +  1 ) )
3029adantr 274 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( U  + 
1 ) )
318recnd 7818 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  CC )
32 ax-1cn 7737 . . . . . . 7  |-  1  e.  CC
33 addcom 7923 . . . . . . 7  |-  ( ( U  e.  CC  /\  1  e.  CC )  ->  ( U  +  1 )  =  ( 1  +  U ) )
3431, 32, 33sylancl 410 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  =  ( 1  +  U ) )
358, 14elrpd 9510 . . . . . . 7  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  e.  RR+ )
36 efgt1p 11439 . . . . . . 7  |-  ( U  e.  RR+  ->  ( 1  +  U )  < 
( exp `  U
) )
3735, 36syl 14 . . . . . 6  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( 1  +  U
)  <  ( exp `  U ) )
3834, 37eqbrtrd 3958 . . . . 5  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( U  +  1 )  <  ( exp `  U ) )
398, 26, 28, 30, 38lttrd 7912 . . . 4  |-  ( ( U  e.  RR  /\  1  <  U )  ->  U  <  ( exp `  U
) )
4024, 39jca 304 . . 3  |-  ( ( U  e.  RR  /\  1  <  U )  -> 
( ( exp `  0
)  <  U  /\  U  <  ( exp `  U
) ) )
41 simplll 523 . . . . . . 7  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  U  e.  RR )
422, 41, 3sylancr 411 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( 0 [,] U )  C_  RR )
43 simplr 520 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  ( 0 [,] U ) )
4442, 43sseldd 3103 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  e.  RR )
45 simprl 521 . . . . . 6  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  ( 0 [,] U ) )
4642, 45sseldd 3103 . . . . 5  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  z  e.  RR )
4744, 46jca 304 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( y  e.  RR  /\  z  e.  RR ) )
48 simprr 522 . . . 4  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  y  <  z
)
49 efltim 11441 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <  z  ->  ( exp `  y
)  <  ( exp `  z ) ) )
5047, 48, 49sylc 62 . . 3  |-  ( ( ( ( U  e.  RR  /\  1  < 
U )  /\  y  e.  ( 0 [,] U
) )  /\  (
z  e.  ( 0 [,] U )  /\  y  <  z ) )  ->  ( exp `  y
)  <  ( exp `  z ) )
517, 8, 8, 14, 16, 18, 21, 40, 50ivthinc 12829 . 2  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  (
0 (,) U ) ( exp `  x
)  =  U )
52 ssrexv 3167 . 2  |-  ( ( 0 (,) U ) 
C_  RR  ->  ( E. x  e.  ( 0 (,) U ) ( exp `  x )  =  U  ->  E. x  e.  RR  ( exp `  x
)  =  U ) )
536, 51, 52sylc 62 1  |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   E.wrex 2418    C_ wss 3076   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    < clt 7824   RR+crp 9470   (,)cioo 9701   [,]cicc 9704   expce 11385   -cn->ccncf 12765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765  ax-addf 7766  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ioo 9705  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by:  reeff1oleme  12901  reeff1o  12902
  Copyright terms: Public domain W3C validator