ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnz Unicode version

Theorem recnz 9486
Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
recnz  |-  ( ( A  e.  RR  /\  1  <  A )  ->  -.  ( 1  /  A
)  e.  ZZ )

Proof of Theorem recnz
StepHypRef Expression
1 recgt1i 8991 . . 3  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 0  <  (
1  /  A )  /\  ( 1  /  A )  <  1
) )
21simprd 114 . 2  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 1  /  A
)  <  1 )
31simpld 112 . . . 4  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
0  <  ( 1  /  A ) )
4 zgt0ge1 9451 . . . 4  |-  ( ( 1  /  A )  e.  ZZ  ->  (
0  <  ( 1  /  A )  <->  1  <_  ( 1  /  A ) ) )
53, 4syl5ibcom 155 . . 3  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( ( 1  /  A )  e.  ZZ  ->  1  <_  ( 1  /  A ) ) )
6 1re 8091 . . . 4  |-  1  e.  RR
7 0lt1 8219 . . . . . . . 8  |-  0  <  1
8 0re 8092 . . . . . . . . 9  |-  0  e.  RR
9 lttr 8166 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
108, 6, 9mp3an12 1340 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
117, 10mpani 430 . . . . . . 7  |-  ( A  e.  RR  ->  (
1  <  A  ->  0  <  A ) )
1211imdistani 445 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( A  e.  RR  /\  0  <  A ) )
13 gt0ap0 8719 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
1412, 13syl 14 . . . . 5  |-  ( ( A  e.  RR  /\  1  <  A )  ->  A #  0 )
15 rerecclap 8823 . . . . 5  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
1  /  A )  e.  RR )
1614, 15syldan 282 . . . 4  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 1  /  A
)  e.  RR )
17 lenlt 8168 . . . 4  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 1  <_ 
( 1  /  A
)  <->  -.  ( 1  /  A )  <  1 ) )
186, 16, 17sylancr 414 . . 3  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 1  <_  (
1  /  A )  <->  -.  ( 1  /  A
)  <  1 ) )
195, 18sylibd 149 . 2  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( ( 1  /  A )  e.  ZZ  ->  -.  ( 1  /  A )  <  1
) )
202, 19mt2d 626 1  |-  ( ( A  e.  RR  /\  1  <  A )  ->  -.  ( 1  /  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2177   class class class wbr 4051  (class class class)co 5957   RRcr 7944   0cc0 7945   1c1 7946    < clt 8127    <_ cle 8128   # cap 8674    / cdiv 8765   ZZcz 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-n0 9316  df-z 9393
This theorem is referenced by:  halfnz  9489  facndiv  10906  dvdsprmpweqle  12735
  Copyright terms: Public domain W3C validator