ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0c Unicode version

Theorem elnnnn0c 9375
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
elnnnn0c  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )

Proof of Theorem elnnnn0c
StepHypRef Expression
1 nnnn0 9337 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 nnge1 9094 . . 3  |-  ( N  e.  NN  ->  1  <_  N )
31, 2jca 306 . 2  |-  ( N  e.  NN  ->  ( N  e.  NN0  /\  1  <_  N ) )
4 0lt1 8234 . . . . 5  |-  0  <  1
5 nn0re 9339 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
6 0re 8107 . . . . . . 7  |-  0  e.  RR
7 1re 8106 . . . . . . 7  |-  1  e.  RR
8 ltletr 8197 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
96, 7, 8mp3an12 1340 . . . . . 6  |-  ( N  e.  RR  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
105, 9syl 14 . . . . 5  |-  ( N  e.  NN0  ->  ( ( 0  <  1  /\  1  <_  N )  ->  0  <  N ) )
114, 10mpani 430 . . . 4  |-  ( N  e.  NN0  ->  ( 1  <_  N  ->  0  <  N ) )
1211imdistani 445 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N )  -> 
( N  e.  NN0  /\  0  <  N ) )
13 elnnnn0b 9374 . . 3  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  0  < 
N ) )
1412, 13sylibr 134 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N )  ->  N  e.  NN )
153, 14impbii 126 1  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   class class class wbr 4059   RRcr 7959   0cc0 7960   1c1 7961    < clt 8142    <_ cle 8143   NNcn 9071   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-iota 5251  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-inn 9072  df-n0 9331
This theorem is referenced by:  nn0ge2m1nn  9390  wrdsymb1  11067  lswccats1fst  11134  nn0o1gt2  12331  pcelnn  12759  lgsabs1  15631
  Copyright terms: Public domain W3C validator