ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0c Unicode version

Theorem elnnnn0c 9155
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
elnnnn0c  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )

Proof of Theorem elnnnn0c
StepHypRef Expression
1 nnnn0 9117 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 nnge1 8876 . . 3  |-  ( N  e.  NN  ->  1  <_  N )
31, 2jca 304 . 2  |-  ( N  e.  NN  ->  ( N  e.  NN0  /\  1  <_  N ) )
4 0lt1 8021 . . . . 5  |-  0  <  1
5 nn0re 9119 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
6 0re 7895 . . . . . . 7  |-  0  e.  RR
7 1re 7894 . . . . . . 7  |-  1  e.  RR
8 ltletr 7984 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
96, 7, 8mp3an12 1317 . . . . . 6  |-  ( N  e.  RR  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
105, 9syl 14 . . . . 5  |-  ( N  e.  NN0  ->  ( ( 0  <  1  /\  1  <_  N )  ->  0  <  N ) )
114, 10mpani 427 . . . 4  |-  ( N  e.  NN0  ->  ( 1  <_  N  ->  0  <  N ) )
1211imdistani 442 . . 3  |-  ( ( N  e.  NN0  /\  1  <_  N )  -> 
( N  e.  NN0  /\  0  <  N ) )
13 elnnnn0b 9154 . . 3  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  0  < 
N ) )
1412, 13sylibr 133 . 2  |-  ( ( N  e.  NN0  /\  1  <_  N )  ->  N  e.  NN )
153, 14impbii 125 1  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   class class class wbr 3981   RRcr 7748   0cc0 7749   1c1 7750    < clt 7929    <_ cle 7930   NNcn 8853   NN0cn0 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-opab 4043  df-xp 4609  df-cnv 4611  df-iota 5152  df-fv 5195  df-ov 5844  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-inn 8854  df-n0 9111
This theorem is referenced by:  nn0ge2m1nn  9170  nn0o1gt2  11838  pcelnn  12248  lgsabs1  13540
  Copyright terms: Public domain W3C validator