ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinq12gt0 Unicode version

Theorem sinq12gt0 15504
Description: The sine of a number strictly between  0 and  pi is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sinq12gt0  |-  ( A  e.  ( 0 (,) pi )  ->  0  <  ( sin `  A
) )

Proof of Theorem sinq12gt0
StepHypRef Expression
1 0xr 8193 . . 3  |-  0  e.  RR*
2 pire 15460 . . . 4  |-  pi  e.  RR
32rexri 8204 . . 3  |-  pi  e.  RR*
4 elioo2 10117 . . 3  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  ( A  e.  ( 0 (,) pi )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  pi ) ) )
51, 3, 4mp2an 426 . 2  |-  ( A  e.  ( 0 (,) pi )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  pi ) )
6 rehalfcl 9338 . . . . . 6  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
763ad2ant1 1042 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( A  /  2 )  e.  RR )
8 halfpos2 9341 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <  ( A  /  2 ) ) )
98biimpa 296 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A  /  2 ) )
1093adant3 1041 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( A  /  2
) )
11 2re 9180 . . . . . . . . 9  |-  2  e.  RR
12 2pos 9201 . . . . . . . . 9  |-  0  <  2
1311, 12pm3.2i 272 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
14 ltdiv1 9015 . . . . . . . 8  |-  ( ( A  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  < 
pi 
<->  ( A  /  2
)  <  ( pi  /  2 ) ) )
152, 13, 14mp3an23 1363 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  <  pi  <->  ( A  /  2 )  < 
( pi  /  2
) ) )
1615adantr 276 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  <  pi  <->  ( A  /  2 )  <  ( pi  / 
2 ) ) )
1716biimp3a 1379 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( A  /  2 )  < 
( pi  /  2
) )
18 sincosq1lem 15499 . . . . 5  |-  ( ( ( A  /  2
)  e.  RR  /\  0  <  ( A  / 
2 )  /\  ( A  /  2 )  < 
( pi  /  2
) )  ->  0  <  ( sin `  ( A  /  2 ) ) )
197, 10, 17, 18syl3anc 1271 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  ( A  /  2 ) ) )
20 resubcl 8410 . . . . . . . . 9  |-  ( ( pi  e.  RR  /\  A  e.  RR )  ->  ( pi  -  A
)  e.  RR )
212, 20mpan 424 . . . . . . . 8  |-  ( A  e.  RR  ->  (
pi  -  A )  e.  RR )
22 rehalfcl 9338 . . . . . . . 8  |-  ( ( pi  -  A )  e.  RR  ->  (
( pi  -  A
)  /  2 )  e.  RR )
2321, 22syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (
( pi  -  A
)  /  2 )  e.  RR )
24233ad2ant1 1042 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( pi  -  A
)  /  2 )  e.  RR )
25 posdif 8602 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  pi  e.  RR )  -> 
( A  <  pi  <->  0  <  ( pi  -  A ) ) )
262, 25mpan2 425 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  <  pi  <->  0  <  ( pi  -  A ) ) )
27 halfpos2 9341 . . . . . . . . . 10  |-  ( ( pi  -  A )  e.  RR  ->  (
0  <  ( pi  -  A )  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
2821, 27syl 14 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <  ( pi  -  A )  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
2926, 28bitrd 188 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  <  pi  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
3029adantr 276 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  <  pi  <->  0  <  ( ( pi 
-  A )  / 
2 ) ) )
3130biimp3a 1379 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( ( pi  -  A )  /  2
) )
32 ltsubpos 8601 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  pi  e.  RR )  -> 
( 0  <  A  <->  ( pi  -  A )  <  pi ) )
332, 32mpan2 425 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( pi  -  A )  <  pi ) )
34 ltdiv1 9015 . . . . . . . . . . 11  |-  ( ( ( pi  -  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
-  A )  < 
pi 
<->  ( ( pi  -  A )  /  2
)  <  ( pi  /  2 ) ) )
352, 13, 34mp3an23 1363 . . . . . . . . . 10  |-  ( ( pi  -  A )  e.  RR  ->  (
( pi  -  A
)  <  pi  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3621, 35syl 14 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  -  A
)  <  pi  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3733, 36bitrd 188 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3837biimpa 296 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( pi  -  A )  /  2
)  <  ( pi  /  2 ) )
39383adant3 1041 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( pi  -  A
)  /  2 )  <  ( pi  / 
2 ) )
40 sincosq1lem 15499 . . . . . 6  |-  ( ( ( ( pi  -  A )  /  2
)  e.  RR  /\  0  <  ( ( pi 
-  A )  / 
2 )  /\  (
( pi  -  A
)  /  2 )  <  ( pi  / 
2 ) )  -> 
0  <  ( sin `  ( ( pi  -  A )  /  2
) ) )
4124, 31, 39, 40syl3anc 1271 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  (
( pi  -  A
)  /  2 ) ) )
42 recn 8132 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
43 picn 15461 . . . . . . . . . 10  |-  pi  e.  CC
44 2cn 9181 . . . . . . . . . . 11  |-  2  e.  CC
45 2ap0 9203 . . . . . . . . . . 11  |-  2 #  0
4644, 45pm3.2i 272 . . . . . . . . . 10  |-  ( 2  e.  CC  /\  2 #  0 )
47 divsubdirap 8855 . . . . . . . . . 10  |-  ( ( pi  e.  CC  /\  A  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( pi  -  A )  /  2
)  =  ( ( pi  /  2 )  -  ( A  / 
2 ) ) )
4843, 46, 47mp3an13 1362 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( pi  -  A
)  /  2 )  =  ( ( pi 
/  2 )  -  ( A  /  2
) ) )
4942, 48syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( pi  -  A
)  /  2 )  =  ( ( pi 
/  2 )  -  ( A  /  2
) ) )
5049fveq2d 5631 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( sin `  (
( pi  /  2
)  -  ( A  /  2 ) ) ) )
516recnd 8175 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  CC )
52 sinhalfpim 15495 . . . . . . . 8  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  -  ( A  /  2
) ) )  =  ( cos `  ( A  /  2 ) ) )
5351, 52syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  -  ( A  /  2
) ) )  =  ( cos `  ( A  /  2 ) ) )
5450, 53eqtrd 2262 . . . . . 6  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( cos `  ( A  /  2 ) ) )
55543ad2ant1 1042 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( cos `  ( A  /  2 ) ) )
5641, 55breqtrd 4109 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( cos `  ( A  /  2 ) ) )
57 resincl 12231 . . . . . . . 8  |-  ( ( A  /  2 )  e.  RR  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
58 recoscl 12232 . . . . . . . 8  |-  ( ( A  /  2 )  e.  RR  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
5957, 58jca 306 . . . . . . 7  |-  ( ( A  /  2 )  e.  RR  ->  (
( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR ) )
60 axmulgt0 8218 . . . . . . 7  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
616, 59, 603syl 17 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
62 remulcl 8127 . . . . . . . . 9  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
636, 59, 623syl 17 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
64 axmulgt0 8218 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6511, 63, 64sylancr 414 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6612, 65mpani 430 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( ( sin `  ( A  / 
2 ) )  x.  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6761, 66syld 45 . . . . 5  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
68673ad2ant1 1042 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6919, 56, 68mp2and 433 . . 3  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
70 divcanap2 8827 . . . . . . . 8  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
7144, 45, 70mp3an23 1363 . . . . . . 7  |-  ( A  e.  CC  ->  (
2  x.  ( A  /  2 ) )  =  A )
7242, 71syl 14 . . . . . 6  |-  ( A  e.  RR  ->  (
2  x.  ( A  /  2 ) )  =  A )
7372fveq2d 5631 . . . . 5  |-  ( A  e.  RR  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
74 sin2t 12260 . . . . . 6  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7551, 74syl 14 . . . . 5  |-  ( A  e.  RR  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7673, 75eqtr3d 2264 . . . 4  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
77763ad2ant1 1042 . . 3  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( sin `  A )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7869, 77breqtrrd 4111 . 2  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  A
) )
795, 78sylbi 121 1  |-  ( A  e.  ( 0 (,) pi )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999    x. cmul 8004   RR*cxr 8180    < clt 8181    - cmin 8317   # cap 8728    / cdiv 8819   2c2 9161   (,)cioo 10084   sincsin 12155   cosccos 12156   picpi 12158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-pre-suploc 8120  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-ioc 10089  df-ico 10090  df-icc 10091  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-sin 12161  df-cos 12162  df-pi 12164  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  sinq34lt0t  15505  cosq14gt0  15506  cosordlem  15523
  Copyright terms: Public domain W3C validator