ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinq12gt0 Unicode version

Theorem sinq12gt0 15417
Description: The sine of a number strictly between  0 and  pi is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sinq12gt0  |-  ( A  e.  ( 0 (,) pi )  ->  0  <  ( sin `  A
) )

Proof of Theorem sinq12gt0
StepHypRef Expression
1 0xr 8154 . . 3  |-  0  e.  RR*
2 pire 15373 . . . 4  |-  pi  e.  RR
32rexri 8165 . . 3  |-  pi  e.  RR*
4 elioo2 10078 . . 3  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  ( A  e.  ( 0 (,) pi )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  pi ) ) )
51, 3, 4mp2an 426 . 2  |-  ( A  e.  ( 0 (,) pi )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  pi ) )
6 rehalfcl 9299 . . . . . 6  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
763ad2ant1 1021 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( A  /  2 )  e.  RR )
8 halfpos2 9302 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <  ( A  /  2 ) ) )
98biimpa 296 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A  /  2 ) )
1093adant3 1020 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( A  /  2
) )
11 2re 9141 . . . . . . . . 9  |-  2  e.  RR
12 2pos 9162 . . . . . . . . 9  |-  0  <  2
1311, 12pm3.2i 272 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
14 ltdiv1 8976 . . . . . . . 8  |-  ( ( A  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  < 
pi 
<->  ( A  /  2
)  <  ( pi  /  2 ) ) )
152, 13, 14mp3an23 1342 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  <  pi  <->  ( A  /  2 )  < 
( pi  /  2
) ) )
1615adantr 276 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  <  pi  <->  ( A  /  2 )  <  ( pi  / 
2 ) ) )
1716biimp3a 1358 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( A  /  2 )  < 
( pi  /  2
) )
18 sincosq1lem 15412 . . . . 5  |-  ( ( ( A  /  2
)  e.  RR  /\  0  <  ( A  / 
2 )  /\  ( A  /  2 )  < 
( pi  /  2
) )  ->  0  <  ( sin `  ( A  /  2 ) ) )
197, 10, 17, 18syl3anc 1250 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  ( A  /  2 ) ) )
20 resubcl 8371 . . . . . . . . 9  |-  ( ( pi  e.  RR  /\  A  e.  RR )  ->  ( pi  -  A
)  e.  RR )
212, 20mpan 424 . . . . . . . 8  |-  ( A  e.  RR  ->  (
pi  -  A )  e.  RR )
22 rehalfcl 9299 . . . . . . . 8  |-  ( ( pi  -  A )  e.  RR  ->  (
( pi  -  A
)  /  2 )  e.  RR )
2321, 22syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (
( pi  -  A
)  /  2 )  e.  RR )
24233ad2ant1 1021 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( pi  -  A
)  /  2 )  e.  RR )
25 posdif 8563 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  pi  e.  RR )  -> 
( A  <  pi  <->  0  <  ( pi  -  A ) ) )
262, 25mpan2 425 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  <  pi  <->  0  <  ( pi  -  A ) ) )
27 halfpos2 9302 . . . . . . . . . 10  |-  ( ( pi  -  A )  e.  RR  ->  (
0  <  ( pi  -  A )  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
2821, 27syl 14 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <  ( pi  -  A )  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
2926, 28bitrd 188 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  <  pi  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
3029adantr 276 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  <  pi  <->  0  <  ( ( pi 
-  A )  / 
2 ) ) )
3130biimp3a 1358 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( ( pi  -  A )  /  2
) )
32 ltsubpos 8562 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  pi  e.  RR )  -> 
( 0  <  A  <->  ( pi  -  A )  <  pi ) )
332, 32mpan2 425 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( pi  -  A )  <  pi ) )
34 ltdiv1 8976 . . . . . . . . . . 11  |-  ( ( ( pi  -  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
-  A )  < 
pi 
<->  ( ( pi  -  A )  /  2
)  <  ( pi  /  2 ) ) )
352, 13, 34mp3an23 1342 . . . . . . . . . 10  |-  ( ( pi  -  A )  e.  RR  ->  (
( pi  -  A
)  <  pi  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3621, 35syl 14 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  -  A
)  <  pi  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3733, 36bitrd 188 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3837biimpa 296 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( pi  -  A )  /  2
)  <  ( pi  /  2 ) )
39383adant3 1020 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( pi  -  A
)  /  2 )  <  ( pi  / 
2 ) )
40 sincosq1lem 15412 . . . . . 6  |-  ( ( ( ( pi  -  A )  /  2
)  e.  RR  /\  0  <  ( ( pi 
-  A )  / 
2 )  /\  (
( pi  -  A
)  /  2 )  <  ( pi  / 
2 ) )  -> 
0  <  ( sin `  ( ( pi  -  A )  /  2
) ) )
4124, 31, 39, 40syl3anc 1250 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  (
( pi  -  A
)  /  2 ) ) )
42 recn 8093 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
43 picn 15374 . . . . . . . . . 10  |-  pi  e.  CC
44 2cn 9142 . . . . . . . . . . 11  |-  2  e.  CC
45 2ap0 9164 . . . . . . . . . . 11  |-  2 #  0
4644, 45pm3.2i 272 . . . . . . . . . 10  |-  ( 2  e.  CC  /\  2 #  0 )
47 divsubdirap 8816 . . . . . . . . . 10  |-  ( ( pi  e.  CC  /\  A  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( pi  -  A )  /  2
)  =  ( ( pi  /  2 )  -  ( A  / 
2 ) ) )
4843, 46, 47mp3an13 1341 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( pi  -  A
)  /  2 )  =  ( ( pi 
/  2 )  -  ( A  /  2
) ) )
4942, 48syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( pi  -  A
)  /  2 )  =  ( ( pi 
/  2 )  -  ( A  /  2
) ) )
5049fveq2d 5603 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( sin `  (
( pi  /  2
)  -  ( A  /  2 ) ) ) )
516recnd 8136 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  CC )
52 sinhalfpim 15408 . . . . . . . 8  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  -  ( A  /  2
) ) )  =  ( cos `  ( A  /  2 ) ) )
5351, 52syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  -  ( A  /  2
) ) )  =  ( cos `  ( A  /  2 ) ) )
5450, 53eqtrd 2240 . . . . . 6  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( cos `  ( A  /  2 ) ) )
55543ad2ant1 1021 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( cos `  ( A  /  2 ) ) )
5641, 55breqtrd 4085 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( cos `  ( A  /  2 ) ) )
57 resincl 12146 . . . . . . . 8  |-  ( ( A  /  2 )  e.  RR  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
58 recoscl 12147 . . . . . . . 8  |-  ( ( A  /  2 )  e.  RR  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
5957, 58jca 306 . . . . . . 7  |-  ( ( A  /  2 )  e.  RR  ->  (
( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR ) )
60 axmulgt0 8179 . . . . . . 7  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
616, 59, 603syl 17 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
62 remulcl 8088 . . . . . . . . 9  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
636, 59, 623syl 17 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
64 axmulgt0 8179 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6511, 63, 64sylancr 414 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6612, 65mpani 430 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( ( sin `  ( A  / 
2 ) )  x.  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6761, 66syld 45 . . . . 5  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
68673ad2ant1 1021 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6919, 56, 68mp2and 433 . . 3  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
70 divcanap2 8788 . . . . . . . 8  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
7144, 45, 70mp3an23 1342 . . . . . . 7  |-  ( A  e.  CC  ->  (
2  x.  ( A  /  2 ) )  =  A )
7242, 71syl 14 . . . . . 6  |-  ( A  e.  RR  ->  (
2  x.  ( A  /  2 ) )  =  A )
7372fveq2d 5603 . . . . 5  |-  ( A  e.  RR  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
74 sin2t 12175 . . . . . 6  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7551, 74syl 14 . . . . 5  |-  ( A  e.  RR  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7673, 75eqtr3d 2242 . . . 4  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
77763ad2ant1 1021 . . 3  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( sin `  A )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7869, 77breqtrrd 4087 . 2  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  A
) )
795, 78sylbi 121 1  |-  ( A  e.  ( 0 (,) pi )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    x. cmul 7965   RR*cxr 8141    < clt 8142    - cmin 8278   # cap 8689    / cdiv 8780   2c2 9122   (,)cioo 10045   sincsin 12070   cosccos 12071   picpi 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-pre-suploc 8081  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-ioc 10050  df-ico 10051  df-icc 10052  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-shft 11241  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-sin 12076  df-cos 12077  df-pi 12079  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  sinq34lt0t  15418  cosq14gt0  15419  cosordlem  15436
  Copyright terms: Public domain W3C validator