Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recreclt | Unicode version |
Description: Given a positive number , construct a new positive number less than both and 1. (Contributed by NM, 28-Dec-2005.) |
Ref | Expression |
---|---|
recreclt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recgt0 8704 | . . . 4 | |
2 | simpl 108 | . . . . . 6 | |
3 | gt0ap0 8484 | . . . . . 6 # | |
4 | 2, 3 | rerecclapd 8689 | . . . . 5 |
5 | 1re 7860 | . . . . 5 | |
6 | ltaddpos 8310 | . . . . 5 | |
7 | 4, 5, 6 | sylancl 410 | . . . 4 |
8 | 1, 7 | mpbid 146 | . . 3 |
9 | readdcl 7841 | . . . . 5 | |
10 | 5, 4, 9 | sylancr 411 | . . . 4 |
11 | 0lt1 7985 | . . . . . 6 | |
12 | 0re 7861 | . . . . . . . 8 | |
13 | lttr 7934 | . . . . . . . 8 | |
14 | 12, 5, 13 | mp3an12 1309 | . . . . . . 7 |
15 | 10, 14 | syl 14 | . . . . . 6 |
16 | 11, 15 | mpani 427 | . . . . 5 |
17 | 8, 16 | mpd 13 | . . . 4 |
18 | recgt1 8751 | . . . 4 | |
19 | 10, 17, 18 | syl2anc 409 | . . 3 |
20 | 8, 19 | mpbid 146 | . 2 |
21 | ltaddpos 8310 | . . . . . 6 | |
22 | 5, 4, 21 | sylancr 411 | . . . . 5 |
23 | 11, 22 | mpbii 147 | . . . 4 |
24 | 4 | recnd 7889 | . . . . 5 |
25 | ax-1cn 7808 | . . . . 5 | |
26 | addcom 7995 | . . . . 5 | |
27 | 24, 25, 26 | sylancl 410 | . . . 4 |
28 | 23, 27 | breqtrd 3990 | . . 3 |
29 | simpr 109 | . . . 4 | |
30 | ltrec1 8742 | . . . 4 | |
31 | 2, 29, 10, 17, 30 | syl22anc 1221 | . . 3 |
32 | 28, 31 | mpbid 146 | . 2 |
33 | 20, 32 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 class class class wbr 3965 (class class class)co 5818 cc 7713 cr 7714 cc0 7715 c1 7716 caddc 7718 clt 7895 cdiv 8528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |