ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd Unicode version

Theorem expnlbnd 10579
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.)
Assertion
Ref Expression
expnlbnd  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
)
Distinct variable groups:    A, k    B, k

Proof of Theorem expnlbnd
StepHypRef Expression
1 rpre 9596 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpap0 9606 . . . 4  |-  ( A  e.  RR+  ->  A #  0 )
31, 2rerecclapd 8730 . . 3  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR )
4 expnbnd 10578 . . 3  |-  ( ( ( 1  /  A
)  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( 1  /  A )  <  ( B ^ k ) )
53, 4syl3an1 1261 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  /  A )  <  ( B ^ k ) )
6 rpregt0 9603 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
763ad2ant1 1008 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( A  e.  RR  /\  0  <  A ) )
87adantr 274 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( A  e.  RR  /\  0  <  A ) )
9 nnnn0 9121 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
10 reexpcl 10472 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
119, 10sylan2 284 . . . . . . 7  |-  ( ( B  e.  RR  /\  k  e.  NN )  ->  ( B ^ k
)  e.  RR )
1211adantlr 469 . . . . . 6  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
13 simpll 519 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  B  e.  RR )
14 nnz 9210 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  ZZ )
1514adantl 275 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  k  e.  ZZ )
16 0lt1 8025 . . . . . . . . . 10  |-  0  <  1
17 0re 7899 . . . . . . . . . . 11  |-  0  e.  RR
18 1re 7898 . . . . . . . . . . 11  |-  1  e.  RR
19 lttr 7972 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
2017, 18, 19mp3an12 1317 . . . . . . . . . 10  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
2116, 20mpani 427 . . . . . . . . 9  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
2221imp 123 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  <  B )  -> 
0  <  B )
2322adantr 274 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  0  <  B
)
24 expgt0 10488 . . . . . . 7  |-  ( ( B  e.  RR  /\  k  e.  ZZ  /\  0  <  B )  ->  0  <  ( B ^ k
) )
2513, 15, 23, 24syl3anc 1228 . . . . . 6  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  0  <  ( B ^ k ) )
2612, 25jca 304 . . . . 5  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( B ^ k )  e.  RR  /\  0  < 
( B ^ k
) ) )
27263adantl1 1143 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( B ^
k )  e.  RR  /\  0  <  ( B ^ k ) ) )
28 ltrec1 8783 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( B ^ k )  e.  RR  /\  0  < 
( B ^ k
) ) )  -> 
( ( 1  /  A )  <  ( B ^ k )  <->  ( 1  /  ( B ^
k ) )  < 
A ) )
298, 27, 28syl2anc 409 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( 1  /  A )  <  ( B ^ k )  <->  ( 1  /  ( B ^
k ) )  < 
A ) )
3029rexbidva 2463 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( E. k  e.  NN  ( 1  /  A
)  <  ( B ^ k )  <->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
) )
315, 30mpbid 146 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    < clt 7933    / cdiv 8568   NNcn 8857   NN0cn0 9114   ZZcz 9191   RR+crp 9589   ^cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  expnlbnd2  10580
  Copyright terms: Public domain W3C validator