ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd Unicode version

Theorem expnlbnd 10309
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.)
Assertion
Ref Expression
expnlbnd  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
)
Distinct variable groups:    A, k    B, k

Proof of Theorem expnlbnd
StepHypRef Expression
1 rpre 9349 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpap0 9359 . . . 4  |-  ( A  e.  RR+  ->  A #  0 )
31, 2rerecclapd 8506 . . 3  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR )
4 expnbnd 10308 . . 3  |-  ( ( ( 1  /  A
)  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( 1  /  A )  <  ( B ^ k ) )
53, 4syl3an1 1232 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  /  A )  <  ( B ^ k ) )
6 rpregt0 9356 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
763ad2ant1 985 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( A  e.  RR  /\  0  <  A ) )
87adantr 272 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( A  e.  RR  /\  0  <  A ) )
9 nnnn0 8888 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
10 reexpcl 10203 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
119, 10sylan2 282 . . . . . . 7  |-  ( ( B  e.  RR  /\  k  e.  NN )  ->  ( B ^ k
)  e.  RR )
1211adantlr 466 . . . . . 6  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
13 simpll 501 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  B  e.  RR )
14 nnz 8977 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  ZZ )
1514adantl 273 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  k  e.  ZZ )
16 0lt1 7812 . . . . . . . . . 10  |-  0  <  1
17 0re 7690 . . . . . . . . . . 11  |-  0  e.  RR
18 1re 7689 . . . . . . . . . . 11  |-  1  e.  RR
19 lttr 7761 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
2017, 18, 19mp3an12 1288 . . . . . . . . . 10  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
2116, 20mpani 424 . . . . . . . . 9  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
2221imp 123 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  <  B )  -> 
0  <  B )
2322adantr 272 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  0  <  B
)
24 expgt0 10219 . . . . . . 7  |-  ( ( B  e.  RR  /\  k  e.  ZZ  /\  0  <  B )  ->  0  <  ( B ^ k
) )
2513, 15, 23, 24syl3anc 1199 . . . . . 6  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  0  <  ( B ^ k ) )
2612, 25jca 302 . . . . 5  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( B ^ k )  e.  RR  /\  0  < 
( B ^ k
) ) )
27263adantl1 1120 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( B ^
k )  e.  RR  /\  0  <  ( B ^ k ) ) )
28 ltrec1 8556 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( B ^ k )  e.  RR  /\  0  < 
( B ^ k
) ) )  -> 
( ( 1  /  A )  <  ( B ^ k )  <->  ( 1  /  ( B ^
k ) )  < 
A ) )
298, 27, 28syl2anc 406 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( 1  /  A )  <  ( B ^ k )  <->  ( 1  /  ( B ^
k ) )  < 
A ) )
3029rexbidva 2408 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( E. k  e.  NN  ( 1  /  A
)  <  ( B ^ k )  <->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
) )
315, 30mpbid 146 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    e. wcel 1463   E.wrex 2391   class class class wbr 3895  (class class class)co 5728   RRcr 7546   0cc0 7547   1c1 7548    < clt 7724    / cdiv 8345   NNcn 8630   NN0cn0 8881   ZZcz 8958   RR+crp 9343   ^cexp 10185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-rp 9344  df-seqfrec 10112  df-exp 10186
This theorem is referenced by:  expnlbnd2  10310
  Copyright terms: Public domain W3C validator