ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd Unicode version

Theorem expnlbnd 10524
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.)
Assertion
Ref Expression
expnlbnd  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
)
Distinct variable groups:    A, k    B, k

Proof of Theorem expnlbnd
StepHypRef Expression
1 rpre 9549 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpap0 9559 . . . 4  |-  ( A  e.  RR+  ->  A #  0 )
31, 2rerecclapd 8689 . . 3  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR )
4 expnbnd 10523 . . 3  |-  ( ( ( 1  /  A
)  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( 1  /  A )  <  ( B ^ k ) )
53, 4syl3an1 1253 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  /  A )  <  ( B ^ k ) )
6 rpregt0 9556 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
763ad2ant1 1003 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( A  e.  RR  /\  0  <  A ) )
87adantr 274 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( A  e.  RR  /\  0  <  A ) )
9 nnnn0 9080 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
10 reexpcl 10418 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
119, 10sylan2 284 . . . . . . 7  |-  ( ( B  e.  RR  /\  k  e.  NN )  ->  ( B ^ k
)  e.  RR )
1211adantlr 469 . . . . . 6  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
13 simpll 519 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  B  e.  RR )
14 nnz 9169 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  ZZ )
1514adantl 275 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  k  e.  ZZ )
16 0lt1 7985 . . . . . . . . . 10  |-  0  <  1
17 0re 7861 . . . . . . . . . . 11  |-  0  e.  RR
18 1re 7860 . . . . . . . . . . 11  |-  1  e.  RR
19 lttr 7934 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
2017, 18, 19mp3an12 1309 . . . . . . . . . 10  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
2116, 20mpani 427 . . . . . . . . 9  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
2221imp 123 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  <  B )  -> 
0  <  B )
2322adantr 274 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  0  <  B
)
24 expgt0 10434 . . . . . . 7  |-  ( ( B  e.  RR  /\  k  e.  ZZ  /\  0  <  B )  ->  0  <  ( B ^ k
) )
2513, 15, 23, 24syl3anc 1220 . . . . . 6  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  0  <  ( B ^ k ) )
2612, 25jca 304 . . . . 5  |-  ( ( ( B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( B ^ k )  e.  RR  /\  0  < 
( B ^ k
) ) )
27263adantl1 1138 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( B ^
k )  e.  RR  /\  0  <  ( B ^ k ) ) )
28 ltrec1 8742 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( B ^ k )  e.  RR  /\  0  < 
( B ^ k
) ) )  -> 
( ( 1  /  A )  <  ( B ^ k )  <->  ( 1  /  ( B ^
k ) )  < 
A ) )
298, 27, 28syl2anc 409 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  k  e.  NN )  ->  ( ( 1  /  A )  <  ( B ^ k )  <->  ( 1  /  ( B ^
k ) )  < 
A ) )
3029rexbidva 2454 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( E. k  e.  NN  ( 1  /  A
)  <  ( B ^ k )  <->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
) )
315, 30mpbid 146 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. k  e.  NN  ( 1  / 
( B ^ k
) )  <  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 2128   E.wrex 2436   class class class wbr 3965  (class class class)co 5818   RRcr 7714   0cc0 7715   1c1 7716    < clt 7895    / cdiv 8528   NNcn 8816   NN0cn0 9073   ZZcz 9150   RR+crp 9542   ^cexp 10400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-n0 9074  df-z 9151  df-uz 9423  df-rp 9543  df-seqfrec 10327  df-exp 10401
This theorem is referenced by:  expnlbnd2  10525
  Copyright terms: Public domain W3C validator