ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin02gt0 Unicode version

Theorem sin02gt0 11910
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin02gt0  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  A
) )

Proof of Theorem sin02gt0
StepHypRef Expression
1 0xr 8068 . . . . . . 7  |-  0  e.  RR*
2 2re 9054 . . . . . . 7  |-  2  e.  RR
3 elioc2 10005 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  ( A  e.  ( 0 (,] 2 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  2 ) ) )
41, 2, 3mp2an 426 . . . . . 6  |-  ( A  e.  ( 0 (,] 2 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  2 ) )
5 rehalfcl 9212 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
653ad2ant1 1020 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  ( A  /  2 )  e.  RR )
74, 6sylbi 121 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  RR )
8 resincl 11866 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
9 recoscl 11867 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
108, 9remulcld 8052 . . . . 5  |-  ( ( A  /  2 )  e.  RR  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
117, 10syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
12 2pos 9075 . . . . . . . . . 10  |-  0  <  2
13 divgt0 8893 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( A  /  2 ) )
142, 12, 13mpanr12 439 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A  /  2 ) )
15143adant3 1019 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  0  <  ( A  /  2
) )
162, 12pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
17 lediv1 8890 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_ 
2  <->  ( A  / 
2 )  <_  (
2  /  2 ) ) )
182, 16, 17mp3an23 1340 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( A  <_  2  <->  ( A  /  2 )  <_ 
( 2  /  2
) ) )
1918biimpa 296 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <_  2 )  -> 
( A  /  2
)  <_  ( 2  /  2 ) )
20 2div2e1 9117 . . . . . . . . . 10  |-  ( 2  /  2 )  =  1
2119, 20breqtrdi 4071 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <_  2 )  -> 
( A  /  2
)  <_  1 )
22213adant2 1018 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  ( A  /  2 )  <_ 
1 )
236, 15, 223jca 1179 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  (
( A  /  2
)  e.  RR  /\  0  <  ( A  / 
2 )  /\  ( A  /  2 )  <_ 
1 ) )
24 1re 8020 . . . . . . . 8  |-  1  e.  RR
25 elioc2 10005 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( A  /  2
)  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) ) )
261, 24, 25mp2an 426 . . . . . . 7  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) )
2723, 4, 263imtr4i 201 . . . . . 6  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  ( 0 (,] 1
) )
28 sin01gt0 11908 . . . . . 6  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  ( A  /  2 ) ) )
2927, 28syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  ( A  /  2 ) ) )
30 cos01gt0 11909 . . . . . 6  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
3127, 30syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
32 axmulgt0 8093 . . . . . . 7  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
338, 9, 32syl2anc 411 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
347, 33syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
3529, 31, 34mp2and 433 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )
36 axmulgt0 8093 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
372, 36mpan 424 . . . . 5  |-  ( ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
3812, 37mpani 430 . . . 4  |-  ( ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR  ->  ( 0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
3911, 35, 38sylc 62 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
407recnd 8050 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  CC )
41 sin2t 11895 . . . 4  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
4240, 41syl 14 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
4339, 42breqtrrd 4058 . 2  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
2  x.  ( A  /  2 ) ) ) )
444simp1bi 1014 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  A  e.  RR )
4544recnd 8050 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  A  e.  CC )
46 2cn 9055 . . . . 5  |-  2  e.  CC
47 2ap0 9077 . . . . 5  |-  2 #  0
48 divcanap2 8701 . . . . 5  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
4946, 47, 48mp3an23 1340 . . . 4  |-  ( A  e.  CC  ->  (
2  x.  ( A  /  2 ) )  =  A )
5045, 49syl 14 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
5150fveq2d 5559 . 2  |-  ( A  e.  ( 0 (,] 2 )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
5243, 51breqtrd 4056 1  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    x. cmul 7879   RR*cxr 8055    < clt 8056    <_ cle 8057   # cap 8602    / cdiv 8693   2c2 9035   (,]cioc 9958   sincsin 11790   cosccos 11791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ioc 9962  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-sin 11796  df-cos 11797
This theorem is referenced by:  sincos2sgn  11912  cos12dec  11914  sin0pilem1  14957  sin0pilem2  14958  sinhalfpilem  14967  sincosq1lem  15001
  Copyright terms: Public domain W3C validator