ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin02gt0 Unicode version

Theorem sin02gt0 11929
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin02gt0  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  A
) )

Proof of Theorem sin02gt0
StepHypRef Expression
1 0xr 8073 . . . . . . 7  |-  0  e.  RR*
2 2re 9060 . . . . . . 7  |-  2  e.  RR
3 elioc2 10011 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  ( A  e.  ( 0 (,] 2 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  2 ) ) )
41, 2, 3mp2an 426 . . . . . 6  |-  ( A  e.  ( 0 (,] 2 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  2 ) )
5 rehalfcl 9218 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
653ad2ant1 1020 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  ( A  /  2 )  e.  RR )
74, 6sylbi 121 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  RR )
8 resincl 11885 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
9 recoscl 11886 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
108, 9remulcld 8057 . . . . 5  |-  ( ( A  /  2 )  e.  RR  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
117, 10syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
12 2pos 9081 . . . . . . . . . 10  |-  0  <  2
13 divgt0 8899 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( A  /  2 ) )
142, 12, 13mpanr12 439 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A  /  2 ) )
15143adant3 1019 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  0  <  ( A  /  2
) )
162, 12pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
17 lediv1 8896 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_ 
2  <->  ( A  / 
2 )  <_  (
2  /  2 ) ) )
182, 16, 17mp3an23 1340 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( A  <_  2  <->  ( A  /  2 )  <_ 
( 2  /  2
) ) )
1918biimpa 296 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <_  2 )  -> 
( A  /  2
)  <_  ( 2  /  2 ) )
20 2div2e1 9123 . . . . . . . . . 10  |-  ( 2  /  2 )  =  1
2119, 20breqtrdi 4074 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <_  2 )  -> 
( A  /  2
)  <_  1 )
22213adant2 1018 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  ( A  /  2 )  <_ 
1 )
236, 15, 223jca 1179 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  (
( A  /  2
)  e.  RR  /\  0  <  ( A  / 
2 )  /\  ( A  /  2 )  <_ 
1 ) )
24 1re 8025 . . . . . . . 8  |-  1  e.  RR
25 elioc2 10011 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( A  /  2
)  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) ) )
261, 24, 25mp2an 426 . . . . . . 7  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) )
2723, 4, 263imtr4i 201 . . . . . 6  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  ( 0 (,] 1
) )
28 sin01gt0 11927 . . . . . 6  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  ( A  /  2 ) ) )
2927, 28syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  ( A  /  2 ) ) )
30 cos01gt0 11928 . . . . . 6  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
3127, 30syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
32 axmulgt0 8098 . . . . . . 7  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
338, 9, 32syl2anc 411 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
347, 33syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
3529, 31, 34mp2and 433 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )
36 axmulgt0 8098 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
372, 36mpan 424 . . . . 5  |-  ( ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
3812, 37mpani 430 . . . 4  |-  ( ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR  ->  ( 0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
3911, 35, 38sylc 62 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
407recnd 8055 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  CC )
41 sin2t 11914 . . . 4  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
4240, 41syl 14 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
4339, 42breqtrrd 4061 . 2  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
2  x.  ( A  /  2 ) ) ) )
444simp1bi 1014 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  A  e.  RR )
4544recnd 8055 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  A  e.  CC )
46 2cn 9061 . . . . 5  |-  2  e.  CC
47 2ap0 9083 . . . . 5  |-  2 #  0
48 divcanap2 8707 . . . . 5  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
4946, 47, 48mp3an23 1340 . . . 4  |-  ( A  e.  CC  ->  (
2  x.  ( A  /  2 ) )  =  A )
5045, 49syl 14 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
5150fveq2d 5562 . 2  |-  ( A  e.  ( 0 (,] 2 )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
5243, 51breqtrd 4059 1  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    x. cmul 7884   RR*cxr 8060    < clt 8061    <_ cle 8062   # cap 8608    / cdiv 8699   2c2 9041   (,]cioc 9964   sincsin 11809   cosccos 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ioc 9968  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816
This theorem is referenced by:  sincos2sgn  11931  cos12dec  11933  sin0pilem1  15017  sin0pilem2  15018  sinhalfpilem  15027  sincosq1lem  15061
  Copyright terms: Public domain W3C validator