ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin02gt0 Unicode version

Theorem sin02gt0 11115
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin02gt0  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  A
) )

Proof of Theorem sin02gt0
StepHypRef Expression
1 0xr 7595 . . . . . . 7  |-  0  e.  RR*
2 2re 8553 . . . . . . 7  |-  2  e.  RR
3 elioc2 9415 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  ( A  e.  ( 0 (,] 2 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  2 ) ) )
41, 2, 3mp2an 418 . . . . . 6  |-  ( A  e.  ( 0 (,] 2 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  2 ) )
5 rehalfcl 8704 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
653ad2ant1 965 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  ( A  /  2 )  e.  RR )
74, 6sylbi 120 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  RR )
8 resincl 11072 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
9 recoscl 11073 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
108, 9remulcld 7579 . . . . 5  |-  ( ( A  /  2 )  e.  RR  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
117, 10syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
12 2pos 8574 . . . . . . . . . 10  |-  0  <  2
13 divgt0 8394 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( A  /  2 ) )
142, 12, 13mpanr12 431 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A  /  2 ) )
15143adant3 964 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  0  <  ( A  /  2
) )
162, 12pm3.2i 267 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
17 lediv1 8391 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_ 
2  <->  ( A  / 
2 )  <_  (
2  /  2 ) ) )
182, 16, 17mp3an23 1266 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( A  <_  2  <->  ( A  /  2 )  <_ 
( 2  /  2
) ) )
1918biimpa 291 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <_  2 )  -> 
( A  /  2
)  <_  ( 2  /  2 ) )
20 2div2e1 8609 . . . . . . . . . 10  |-  ( 2  /  2 )  =  1
2119, 20syl6breq 3890 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <_  2 )  -> 
( A  /  2
)  <_  1 )
22213adant2 963 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  ( A  /  2 )  <_ 
1 )
236, 15, 223jca 1124 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  (
( A  /  2
)  e.  RR  /\  0  <  ( A  / 
2 )  /\  ( A  /  2 )  <_ 
1 ) )
24 1re 7548 . . . . . . . 8  |-  1  e.  RR
25 elioc2 9415 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( A  /  2
)  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) ) )
261, 24, 25mp2an 418 . . . . . . 7  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) )
2723, 4, 263imtr4i 200 . . . . . 6  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  ( 0 (,] 1
) )
28 sin01gt0 11113 . . . . . 6  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  ( A  /  2 ) ) )
2927, 28syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  ( A  /  2 ) ) )
30 cos01gt0 11114 . . . . . 6  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
3127, 30syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
32 axmulgt0 7619 . . . . . . 7  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
338, 9, 32syl2anc 404 . . . . . 6  |-  ( ( A  /  2 )  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
347, 33syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
3529, 31, 34mp2and 425 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )
36 axmulgt0 7619 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
372, 36mpan 416 . . . . 5  |-  ( ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
3812, 37mpani 422 . . . 4  |-  ( ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR  ->  ( 0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
3911, 35, 38sylc 62 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
407recnd 7577 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  ( A  /  2 )  e.  CC )
41 sin2t 11101 . . . 4  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
4240, 41syl 14 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
4339, 42breqtrrd 3877 . 2  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
2  x.  ( A  /  2 ) ) ) )
444simp1bi 959 . . . . 5  |-  ( A  e.  ( 0 (,] 2 )  ->  A  e.  RR )
4544recnd 7577 . . . 4  |-  ( A  e.  ( 0 (,] 2 )  ->  A  e.  CC )
46 2cn 8554 . . . . 5  |-  2  e.  CC
47 2ap0 8576 . . . . 5  |-  2 #  0
48 divcanap2 8208 . . . . 5  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
4946, 47, 48mp3an23 1266 . . . 4  |-  ( A  e.  CC  ->  (
2  x.  ( A  /  2 ) )  =  A )
5045, 49syl 14 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
5150fveq2d 5322 . 2  |-  ( A  e.  ( 0 (,] 2 )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
5243, 51breqtrd 3875 1  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 925    = wceq 1290    e. wcel 1439   class class class wbr 3851   ` cfv 5028  (class class class)co 5666   CCcc 7409   RRcr 7410   0cc0 7411   1c1 7412    x. cmul 7416   RR*cxr 7582    < clt 7583    <_ cle 7584   # cap 8119    / cdiv 8200   2c2 8534   (,]cioc 9368   sincsin 10995   cosccos 10996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-disj 3829  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-sup 6733  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-5 8545  df-6 8546  df-7 8547  df-8 8548  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-ioc 9372  df-ico 9373  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-fac 10195  df-bc 10217  df-ihash 10245  df-shft 10310  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804  df-ef 10999  df-sin 11001  df-cos 11002
This theorem is referenced by:  sincos2sgn  11117
  Copyright terms: Public domain W3C validator