| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > logdivlti | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| logdivlti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1004 |
. . . . . . . 8
| |
| 2 | simpl3 1005 |
. . . . . . . . . 10
| |
| 3 | simpr 110 |
. . . . . . . . . 10
| |
| 4 | ere 12031 |
. . . . . . . . . . 11
| |
| 5 | simpl1 1003 |
. . . . . . . . . . 11
| |
| 6 | lelttr 8174 |
. . . . . . . . . . 11
| |
| 7 | 4, 5, 1, 6 | mp3an2i 1355 |
. . . . . . . . . 10
|
| 8 | 2, 3, 7 | mp2and 433 |
. . . . . . . . 9
|
| 9 | epos 12142 |
. . . . . . . . . 10
| |
| 10 | 0re 8085 |
. . . . . . . . . . 11
| |
| 11 | lttr 8159 |
. . . . . . . . . . 11
| |
| 12 | 10, 4, 1, 11 | mp3an12i 1354 |
. . . . . . . . . 10
|
| 13 | 9, 12 | mpani 430 |
. . . . . . . . 9
|
| 14 | 8, 13 | mpd 13 |
. . . . . . . 8
|
| 15 | 1, 14 | elrpd 9828 |
. . . . . . 7
|
| 16 | ltletr 8175 |
. . . . . . . . . . 11
| |
| 17 | 10, 4, 5, 16 | mp3an12i 1354 |
. . . . . . . . . 10
|
| 18 | 9, 17 | mpani 430 |
. . . . . . . . 9
|
| 19 | 2, 18 | mpd 13 |
. . . . . . . 8
|
| 20 | 5, 19 | elrpd 9828 |
. . . . . . 7
|
| 21 | 15, 20 | rpdivcld 9849 |
. . . . . 6
|
| 22 | relogcl 15384 |
. . . . . 6
| |
| 23 | 21, 22 | syl 14 |
. . . . 5
|
| 24 | 1, 20 | rerpdivcld 9863 |
. . . . . 6
|
| 25 | 1re 8084 |
. . . . . 6
| |
| 26 | resubcl 8349 |
. . . . . 6
| |
| 27 | 24, 25, 26 | sylancl 413 |
. . . . 5
|
| 28 | relogcl 15384 |
. . . . . . 7
| |
| 29 | 20, 28 | syl 14 |
. . . . . 6
|
| 30 | 27, 29 | remulcld 8116 |
. . . . 5
|
| 31 | reeflog 15385 |
. . . . . . . . 9
| |
| 32 | 21, 31 | syl 14 |
. . . . . . . 8
|
| 33 | ax-1cn 8031 |
. . . . . . . . 9
| |
| 34 | 24 | recnd 8114 |
. . . . . . . . 9
|
| 35 | pncan3 8293 |
. . . . . . . . 9
| |
| 36 | 33, 34, 35 | sylancr 414 |
. . . . . . . 8
|
| 37 | 32, 36 | eqtr4d 2242 |
. . . . . . 7
|
| 38 | 5 | recnd 8114 |
. . . . . . . . . . . 12
|
| 39 | 38 | mulid2d 8104 |
. . . . . . . . . . 11
|
| 40 | 39, 3 | eqbrtrd 4070 |
. . . . . . . . . 10
|
| 41 | 1red 8100 |
. . . . . . . . . . 11
| |
| 42 | ltmuldiv 8960 |
. . . . . . . . . . 11
| |
| 43 | 41, 1, 5, 19, 42 | syl112anc 1254 |
. . . . . . . . . 10
|
| 44 | 40, 43 | mpbid 147 |
. . . . . . . . 9
|
| 45 | difrp 9827 |
. . . . . . . . . 10
| |
| 46 | 25, 24, 45 | sylancr 414 |
. . . . . . . . 9
|
| 47 | 44, 46 | mpbid 147 |
. . . . . . . 8
|
| 48 | efgt1p 12057 |
. . . . . . . 8
| |
| 49 | 47, 48 | syl 14 |
. . . . . . 7
|
| 50 | 37, 49 | eqbrtrd 4070 |
. . . . . 6
|
| 51 | eflt 15297 |
. . . . . . 7
| |
| 52 | 23, 27, 51 | syl2anc 411 |
. . . . . 6
|
| 53 | 50, 52 | mpbird 167 |
. . . . 5
|
| 54 | 27 | recnd 8114 |
. . . . . . 7
|
| 55 | 54 | mulridd 8102 |
. . . . . 6
|
| 56 | df-e 12010 |
. . . . . . . . 9
| |
| 57 | reeflog 15385 |
. . . . . . . . . . 11
| |
| 58 | 20, 57 | syl 14 |
. . . . . . . . . 10
|
| 59 | 2, 58 | breqtrrd 4076 |
. . . . . . . . 9
|
| 60 | 56, 59 | eqbrtrrid 4084 |
. . . . . . . 8
|
| 61 | efle 15298 |
. . . . . . . . 9
| |
| 62 | 25, 29, 61 | sylancr 414 |
. . . . . . . 8
|
| 63 | 60, 62 | mpbird 167 |
. . . . . . 7
|
| 64 | posdif 8541 |
. . . . . . . . . 10
| |
| 65 | 25, 24, 64 | sylancr 414 |
. . . . . . . . 9
|
| 66 | 44, 65 | mpbid 147 |
. . . . . . . 8
|
| 67 | lemul2 8943 |
. . . . . . . 8
| |
| 68 | 41, 29, 27, 66, 67 | syl112anc 1254 |
. . . . . . 7
|
| 69 | 63, 68 | mpbid 147 |
. . . . . 6
|
| 70 | 55, 69 | eqbrtrrd 4072 |
. . . . 5
|
| 71 | 23, 27, 30, 53, 70 | ltletrd 8509 |
. . . 4
|
| 72 | relogdiv 15392 |
. . . . 5
| |
| 73 | 15, 20, 72 | syl2anc 411 |
. . . 4
|
| 74 | 1cnd 8101 |
. . . . . 6
| |
| 75 | 29 | recnd 8114 |
. . . . . 6
|
| 76 | 34, 74, 75 | subdird 8500 |
. . . . 5
|
| 77 | 1 | recnd 8114 |
. . . . . . 7
|
| 78 | 20 | rpap0d 9837 |
. . . . . . 7
|
| 79 | 77, 38, 75, 78 | div32apd 8900 |
. . . . . 6
|
| 80 | 75 | mulid2d 8104 |
. . . . . 6
|
| 81 | 79, 80 | oveq12d 5972 |
. . . . 5
|
| 82 | 76, 81 | eqtrd 2239 |
. . . 4
|
| 83 | 71, 73, 82 | 3brtr3d 4079 |
. . 3
|
| 84 | relogcl 15384 |
. . . . 5
| |
| 85 | 15, 84 | syl 14 |
. . . 4
|
| 86 | 29, 20 | rerpdivcld 9863 |
. . . . 5
|
| 87 | 1, 86 | remulcld 8116 |
. . . 4
|
| 88 | 85, 87, 29 | ltsub1d 8640 |
. . 3
|
| 89 | 83, 88 | mpbird 167 |
. 2
|
| 90 | 85, 86, 15 | ltdivmuld 9883 |
. 2
|
| 91 | 89, 90 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 ax-pre-suploc 8059 ax-addf 8060 ax-mulf 8061 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-disj 4025 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-of 6168 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-frec 6487 df-1o 6512 df-oadd 6516 df-er 6630 df-map 6747 df-pm 6748 df-en 6838 df-dom 6839 df-fin 6840 df-sup 7098 df-inf 7099 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-xneg 9907 df-xadd 9908 df-ioo 10027 df-ico 10029 df-icc 10030 df-fz 10144 df-fzo 10278 df-seqfrec 10606 df-exp 10697 df-fac 10884 df-bc 10906 df-ihash 10934 df-shft 11176 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-clim 11640 df-sumdc 11715 df-ef 12009 df-e 12010 df-rest 13123 df-topgen 13142 df-psmet 14355 df-xmet 14356 df-met 14357 df-bl 14358 df-mopn 14359 df-top 14520 df-topon 14533 df-bases 14565 df-ntr 14618 df-cn 14710 df-cnp 14711 df-tx 14775 df-cncf 15093 df-limced 15178 df-dvap 15179 df-relog 15380 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |