ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logdivlti Unicode version

Theorem logdivlti 13969
Description: The  log x  /  x function is strictly decreasing on the reals greater than  _e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 1001 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  RR )
2 simpl3 1002 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <_  A )
3 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  <  B )
4 ere 11662 . . . . . . . . . . 11  |-  _e  e.  RR
5 simpl1 1000 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  RR )
6 lelttr 8036 . . . . . . . . . . 11  |-  ( ( _e  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( _e  <_  A  /\  A  <  B )  ->  _e  <  B
) )
74, 5, 1, 6mp3an2i 1342 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( _e  <_  A  /\  A  <  B
)  ->  _e  <  B ) )
82, 3, 7mp2and 433 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <  B )
9 epos 11772 . . . . . . . . . 10  |-  0  <  _e
10 0re 7948 . . . . . . . . . . 11  |-  0  e.  RR
11 lttr 8021 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  _e  /\  _e  <  B )  ->  0  <  B
) )
1210, 4, 1, 11mp3an12i 1341 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 0  < 
_e  /\  _e  <  B )  ->  0  <  B ) )
139, 12mpani 430 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( _e  <  B  ->  0  <  B ) )
148, 13mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  B )
151, 14elrpd 9680 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  RR+ )
16 ltletr 8037 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  _e  /\  _e  <_  A )  ->  0  <  A ) )
1710, 4, 5, 16mp3an12i 1341 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 0  < 
_e  /\  _e  <_  A )  ->  0  <  A ) )
189, 17mpani 430 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( _e  <_  A  ->  0  <  A ) )
192, 18mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  A )
205, 19elrpd 9680 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  RR+ )
2115, 20rpdivcld 9701 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  RR+ )
22 relogcl 13950 . . . . . 6  |-  ( ( B  /  A )  e.  RR+  ->  ( log `  ( B  /  A
) )  e.  RR )
2321, 22syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  e.  RR )
241, 20rerpdivcld 9715 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  RR )
25 1re 7947 . . . . . 6  |-  1  e.  RR
26 resubcl 8211 . . . . . 6  |-  ( ( ( B  /  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( B  /  A )  -  1 )  e.  RR )
2724, 25, 26sylancl 413 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  RR )
28 relogcl 13950 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
2920, 28syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  A
)  e.  RR )
3027, 29remulcld 7978 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  e.  RR )
31 reeflog 13951 . . . . . . . . 9  |-  ( ( B  /  A )  e.  RR+  ->  ( exp `  ( log `  ( B  /  A ) ) )  =  ( B  /  A ) )
3221, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  =  ( B  /  A ) )
33 ax-1cn 7895 . . . . . . . . 9  |-  1  e.  CC
3424recnd 7976 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  CC )
35 pncan3 8155 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( B  /  A
)  e.  CC )  ->  ( 1  +  ( ( B  /  A )  -  1 ) )  =  ( B  /  A ) )
3633, 34, 35sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  +  ( ( B  /  A
)  -  1 ) )  =  ( B  /  A ) )
3732, 36eqtr4d 2213 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  =  ( 1  +  ( ( B  /  A )  -  1 ) ) )
385recnd 7976 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  CC )
3938mulid2d 7966 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  A
)  =  A )
4039, 3eqbrtrd 4022 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  A
)  <  B )
41 1red 7963 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  e.  RR )
42 ltmuldiv 8820 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
4341, 1, 5, 19, 42syl112anc 1242 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
4440, 43mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  <  ( B  /  A ) )
45 difrp 9679 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( B  /  A
)  e.  RR )  ->  ( 1  < 
( B  /  A
)  <->  ( ( B  /  A )  - 
1 )  e.  RR+ ) )
4625, 24, 45sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <  ( B  /  A )  <->  ( ( B  /  A )  - 
1 )  e.  RR+ ) )
4744, 46mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  RR+ )
48 efgt1p 11688 . . . . . . . 8  |-  ( ( ( B  /  A
)  -  1 )  e.  RR+  ->  ( 1  +  ( ( B  /  A )  - 
1 ) )  < 
( exp `  (
( B  /  A
)  -  1 ) ) )
4947, 48syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  +  ( ( B  /  A
)  -  1 ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) )
5037, 49eqbrtrd 4022 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  (
( B  /  A
)  -  1 ) ) )
51 eflt 13863 . . . . . . 7  |-  ( ( ( log `  ( B  /  A ) )  e.  RR  /\  (
( B  /  A
)  -  1 )  e.  RR )  -> 
( ( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 )  <->  ( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) ) )
5223, 27, 51syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 )  <->  ( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) ) )
5350, 52mpbird 167 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 ) )
5427recnd 7976 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  CC )
5554mulid1d 7965 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  1 )  =  ( ( B  /  A )  -  1 ) )
56 df-e 11641 . . . . . . . . 9  |-  _e  =  ( exp `  1 )
57 reeflog 13951 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( exp `  ( log `  A
) )  =  A )
5820, 57syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  A ) )  =  A )
592, 58breqtrrd 4028 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <_  ( exp `  ( log `  A ) ) )
6056, 59eqbrtrrid 4036 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  1
)  <_  ( exp `  ( log `  A
) ) )
61 efle 13864 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( log `  A )  e.  RR )  -> 
( 1  <_  ( log `  A )  <->  ( exp `  1 )  <_  ( exp `  ( log `  A
) ) ) )
6225, 29, 61sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <_  ( log `  A )  <->  ( exp `  1 )  <_  ( exp `  ( log `  A
) ) ) )
6360, 62mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  <_  ( log `  A ) )
64 posdif 8402 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( B  /  A
)  e.  RR )  ->  ( 1  < 
( B  /  A
)  <->  0  <  (
( B  /  A
)  -  1 ) ) )
6525, 24, 64sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <  ( B  /  A )  <->  0  <  ( ( B  /  A
)  -  1 ) ) )
6644, 65mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  ( ( B  /  A )  - 
1 ) )
67 lemul2 8803 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( log `  A )  e.  RR  /\  (
( ( B  /  A )  -  1 )  e.  RR  /\  0  <  ( ( B  /  A )  - 
1 ) ) )  ->  ( 1  <_ 
( log `  A
)  <->  ( ( ( B  /  A )  -  1 )  x.  1 )  <_  (
( ( B  /  A )  -  1 )  x.  ( log `  A ) ) ) )
6841, 29, 27, 66, 67syl112anc 1242 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <_  ( log `  A )  <->  ( (
( B  /  A
)  -  1 )  x.  1 )  <_ 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) ) ) )
6963, 68mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  1 )  <_  ( (
( B  /  A
)  -  1 )  x.  ( log `  A
) ) )
7055, 69eqbrtrrd 4024 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  <_  ( (
( B  /  A
)  -  1 )  x.  ( log `  A
) ) )
7123, 27, 30, 53, 70ltletrd 8370 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  <  ( ( ( B  /  A )  -  1 )  x.  ( log `  A
) ) )
72 relogdiv 13958 . . . . 5  |-  ( ( B  e.  RR+  /\  A  e.  RR+ )  ->  ( log `  ( B  /  A ) )  =  ( ( log `  B
)  -  ( log `  A ) ) )
7315, 20, 72syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  =  ( ( log `  B )  -  ( log `  A ) ) )
74 1cnd 7964 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  e.  CC )
7529recnd 7976 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  A
)  e.  CC )
7634, 74, 75subdird 8362 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  =  ( ( ( B  /  A )  x.  ( log `  A
) )  -  (
1  x.  ( log `  A ) ) ) )
771recnd 7976 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  CC )
7820rpap0d 9689 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A #  0 )
7977, 38, 75, 78div32apd 8760 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  x.  ( log `  A ) )  =  ( B  x.  ( ( log `  A
)  /  A ) ) )
8075mulid2d 7966 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  ( log `  A ) )  =  ( log `  A
) )
8179, 80oveq12d 5887 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  x.  ( log `  A
) )  -  (
1  x.  ( log `  A ) ) )  =  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) )
8276, 81eqtrd 2210 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  =  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) )
8371, 73, 823brtr3d 4031 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  -  ( log `  A ) )  < 
( ( B  x.  ( ( log `  A
)  /  A ) )  -  ( log `  A ) ) )
84 relogcl 13950 . . . . 5  |-  ( B  e.  RR+  ->  ( log `  B )  e.  RR )
8515, 84syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  B
)  e.  RR )
8629, 20rerpdivcld 9715 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  A
)  /  A )  e.  RR )
871, 86remulcld 7978 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  x.  (
( log `  A
)  /  A ) )  e.  RR )
8885, 87, 29ltsub1d 8501 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  <  ( B  x.  ( ( log `  A
)  /  A ) )  <->  ( ( log `  B )  -  ( log `  A ) )  <  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) ) )
8983, 88mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  B
)  <  ( B  x.  ( ( log `  A
)  /  A ) ) )
9085, 86, 15ltdivmuld 9735 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( log `  B )  /  B
)  <  ( ( log `  A )  /  A )  <->  ( log `  B )  <  ( B  x.  ( ( log `  A )  /  A ) ) ) )
9189, 90mpbird 167 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118    / cdiv 8618   RR+crp 9640   expce 11634   _eceu 11635   logclog 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-of 6077  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-map 6644  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-e 11641  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793  df-relog 13946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator