| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > logdivlti | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| logdivlti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1003 |
. . . . . . . 8
| |
| 2 | simpl3 1004 |
. . . . . . . . . 10
| |
| 3 | simpr 110 |
. . . . . . . . . 10
| |
| 4 | ere 11852 |
. . . . . . . . . . 11
| |
| 5 | simpl1 1002 |
. . . . . . . . . . 11
| |
| 6 | lelttr 8132 |
. . . . . . . . . . 11
| |
| 7 | 4, 5, 1, 6 | mp3an2i 1353 |
. . . . . . . . . 10
|
| 8 | 2, 3, 7 | mp2and 433 |
. . . . . . . . 9
|
| 9 | epos 11963 |
. . . . . . . . . 10
| |
| 10 | 0re 8043 |
. . . . . . . . . . 11
| |
| 11 | lttr 8117 |
. . . . . . . . . . 11
| |
| 12 | 10, 4, 1, 11 | mp3an12i 1352 |
. . . . . . . . . 10
|
| 13 | 9, 12 | mpani 430 |
. . . . . . . . 9
|
| 14 | 8, 13 | mpd 13 |
. . . . . . . 8
|
| 15 | 1, 14 | elrpd 9785 |
. . . . . . 7
|
| 16 | ltletr 8133 |
. . . . . . . . . . 11
| |
| 17 | 10, 4, 5, 16 | mp3an12i 1352 |
. . . . . . . . . 10
|
| 18 | 9, 17 | mpani 430 |
. . . . . . . . 9
|
| 19 | 2, 18 | mpd 13 |
. . . . . . . 8
|
| 20 | 5, 19 | elrpd 9785 |
. . . . . . 7
|
| 21 | 15, 20 | rpdivcld 9806 |
. . . . . 6
|
| 22 | relogcl 15182 |
. . . . . 6
| |
| 23 | 21, 22 | syl 14 |
. . . . 5
|
| 24 | 1, 20 | rerpdivcld 9820 |
. . . . . 6
|
| 25 | 1re 8042 |
. . . . . 6
| |
| 26 | resubcl 8307 |
. . . . . 6
| |
| 27 | 24, 25, 26 | sylancl 413 |
. . . . 5
|
| 28 | relogcl 15182 |
. . . . . . 7
| |
| 29 | 20, 28 | syl 14 |
. . . . . 6
|
| 30 | 27, 29 | remulcld 8074 |
. . . . 5
|
| 31 | reeflog 15183 |
. . . . . . . . 9
| |
| 32 | 21, 31 | syl 14 |
. . . . . . . 8
|
| 33 | ax-1cn 7989 |
. . . . . . . . 9
| |
| 34 | 24 | recnd 8072 |
. . . . . . . . 9
|
| 35 | pncan3 8251 |
. . . . . . . . 9
| |
| 36 | 33, 34, 35 | sylancr 414 |
. . . . . . . 8
|
| 37 | 32, 36 | eqtr4d 2232 |
. . . . . . 7
|
| 38 | 5 | recnd 8072 |
. . . . . . . . . . . 12
|
| 39 | 38 | mulid2d 8062 |
. . . . . . . . . . 11
|
| 40 | 39, 3 | eqbrtrd 4056 |
. . . . . . . . . 10
|
| 41 | 1red 8058 |
. . . . . . . . . . 11
| |
| 42 | ltmuldiv 8918 |
. . . . . . . . . . 11
| |
| 43 | 41, 1, 5, 19, 42 | syl112anc 1253 |
. . . . . . . . . 10
|
| 44 | 40, 43 | mpbid 147 |
. . . . . . . . 9
|
| 45 | difrp 9784 |
. . . . . . . . . 10
| |
| 46 | 25, 24, 45 | sylancr 414 |
. . . . . . . . 9
|
| 47 | 44, 46 | mpbid 147 |
. . . . . . . 8
|
| 48 | efgt1p 11878 |
. . . . . . . 8
| |
| 49 | 47, 48 | syl 14 |
. . . . . . 7
|
| 50 | 37, 49 | eqbrtrd 4056 |
. . . . . 6
|
| 51 | eflt 15095 |
. . . . . . 7
| |
| 52 | 23, 27, 51 | syl2anc 411 |
. . . . . 6
|
| 53 | 50, 52 | mpbird 167 |
. . . . 5
|
| 54 | 27 | recnd 8072 |
. . . . . . 7
|
| 55 | 54 | mulridd 8060 |
. . . . . 6
|
| 56 | df-e 11831 |
. . . . . . . . 9
| |
| 57 | reeflog 15183 |
. . . . . . . . . . 11
| |
| 58 | 20, 57 | syl 14 |
. . . . . . . . . 10
|
| 59 | 2, 58 | breqtrrd 4062 |
. . . . . . . . 9
|
| 60 | 56, 59 | eqbrtrrid 4070 |
. . . . . . . 8
|
| 61 | efle 15096 |
. . . . . . . . 9
| |
| 62 | 25, 29, 61 | sylancr 414 |
. . . . . . . 8
|
| 63 | 60, 62 | mpbird 167 |
. . . . . . 7
|
| 64 | posdif 8499 |
. . . . . . . . . 10
| |
| 65 | 25, 24, 64 | sylancr 414 |
. . . . . . . . 9
|
| 66 | 44, 65 | mpbid 147 |
. . . . . . . 8
|
| 67 | lemul2 8901 |
. . . . . . . 8
| |
| 68 | 41, 29, 27, 66, 67 | syl112anc 1253 |
. . . . . . 7
|
| 69 | 63, 68 | mpbid 147 |
. . . . . 6
|
| 70 | 55, 69 | eqbrtrrd 4058 |
. . . . 5
|
| 71 | 23, 27, 30, 53, 70 | ltletrd 8467 |
. . . 4
|
| 72 | relogdiv 15190 |
. . . . 5
| |
| 73 | 15, 20, 72 | syl2anc 411 |
. . . 4
|
| 74 | 1cnd 8059 |
. . . . . 6
| |
| 75 | 29 | recnd 8072 |
. . . . . 6
|
| 76 | 34, 74, 75 | subdird 8458 |
. . . . 5
|
| 77 | 1 | recnd 8072 |
. . . . . . 7
|
| 78 | 20 | rpap0d 9794 |
. . . . . . 7
|
| 79 | 77, 38, 75, 78 | div32apd 8858 |
. . . . . 6
|
| 80 | 75 | mulid2d 8062 |
. . . . . 6
|
| 81 | 79, 80 | oveq12d 5943 |
. . . . 5
|
| 82 | 76, 81 | eqtrd 2229 |
. . . 4
|
| 83 | 71, 73, 82 | 3brtr3d 4065 |
. . 3
|
| 84 | relogcl 15182 |
. . . . 5
| |
| 85 | 15, 84 | syl 14 |
. . . 4
|
| 86 | 29, 20 | rerpdivcld 9820 |
. . . . 5
|
| 87 | 1, 86 | remulcld 8074 |
. . . 4
|
| 88 | 85, 87, 29 | ltsub1d 8598 |
. . 3
|
| 89 | 83, 88 | mpbird 167 |
. 2
|
| 90 | 85, 86, 15 | ltdivmuld 9840 |
. 2
|
| 91 | 89, 90 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-pre-suploc 8017 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-ioo 9984 df-ico 9986 df-icc 9987 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-fac 10835 df-bc 10857 df-ihash 10885 df-shft 10997 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 df-ef 11830 df-e 11831 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-cn 14508 df-cnp 14509 df-tx 14573 df-cncf 14891 df-limced 14976 df-dvap 14977 df-relog 15178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |