ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logdivlti Unicode version

Theorem logdivlti 15225
Description: The  log x  /  x function is strictly decreasing on the reals greater than  _e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 1003 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  RR )
2 simpl3 1004 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <_  A )
3 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  <  B )
4 ere 11854 . . . . . . . . . . 11  |-  _e  e.  RR
5 simpl1 1002 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  RR )
6 lelttr 8134 . . . . . . . . . . 11  |-  ( ( _e  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( _e  <_  A  /\  A  <  B )  ->  _e  <  B
) )
74, 5, 1, 6mp3an2i 1353 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( _e  <_  A  /\  A  <  B
)  ->  _e  <  B ) )
82, 3, 7mp2and 433 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <  B )
9 epos 11965 . . . . . . . . . 10  |-  0  <  _e
10 0re 8045 . . . . . . . . . . 11  |-  0  e.  RR
11 lttr 8119 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  _e  /\  _e  <  B )  ->  0  <  B
) )
1210, 4, 1, 11mp3an12i 1352 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 0  < 
_e  /\  _e  <  B )  ->  0  <  B ) )
139, 12mpani 430 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( _e  <  B  ->  0  <  B ) )
148, 13mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  B )
151, 14elrpd 9787 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  RR+ )
16 ltletr 8135 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  _e  /\  _e  <_  A )  ->  0  <  A ) )
1710, 4, 5, 16mp3an12i 1352 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 0  < 
_e  /\  _e  <_  A )  ->  0  <  A ) )
189, 17mpani 430 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( _e  <_  A  ->  0  <  A ) )
192, 18mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  A )
205, 19elrpd 9787 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  RR+ )
2115, 20rpdivcld 9808 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  RR+ )
22 relogcl 15206 . . . . . 6  |-  ( ( B  /  A )  e.  RR+  ->  ( log `  ( B  /  A
) )  e.  RR )
2321, 22syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  e.  RR )
241, 20rerpdivcld 9822 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  RR )
25 1re 8044 . . . . . 6  |-  1  e.  RR
26 resubcl 8309 . . . . . 6  |-  ( ( ( B  /  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( B  /  A )  -  1 )  e.  RR )
2724, 25, 26sylancl 413 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  RR )
28 relogcl 15206 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
2920, 28syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  A
)  e.  RR )
3027, 29remulcld 8076 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  e.  RR )
31 reeflog 15207 . . . . . . . . 9  |-  ( ( B  /  A )  e.  RR+  ->  ( exp `  ( log `  ( B  /  A ) ) )  =  ( B  /  A ) )
3221, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  =  ( B  /  A ) )
33 ax-1cn 7991 . . . . . . . . 9  |-  1  e.  CC
3424recnd 8074 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  CC )
35 pncan3 8253 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( B  /  A
)  e.  CC )  ->  ( 1  +  ( ( B  /  A )  -  1 ) )  =  ( B  /  A ) )
3633, 34, 35sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  +  ( ( B  /  A
)  -  1 ) )  =  ( B  /  A ) )
3732, 36eqtr4d 2232 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  =  ( 1  +  ( ( B  /  A )  -  1 ) ) )
385recnd 8074 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  CC )
3938mulid2d 8064 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  A
)  =  A )
4039, 3eqbrtrd 4056 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  A
)  <  B )
41 1red 8060 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  e.  RR )
42 ltmuldiv 8920 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
4341, 1, 5, 19, 42syl112anc 1253 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
4440, 43mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  <  ( B  /  A ) )
45 difrp 9786 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( B  /  A
)  e.  RR )  ->  ( 1  < 
( B  /  A
)  <->  ( ( B  /  A )  - 
1 )  e.  RR+ ) )
4625, 24, 45sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <  ( B  /  A )  <->  ( ( B  /  A )  - 
1 )  e.  RR+ ) )
4744, 46mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  RR+ )
48 efgt1p 11880 . . . . . . . 8  |-  ( ( ( B  /  A
)  -  1 )  e.  RR+  ->  ( 1  +  ( ( B  /  A )  - 
1 ) )  < 
( exp `  (
( B  /  A
)  -  1 ) ) )
4947, 48syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  +  ( ( B  /  A
)  -  1 ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) )
5037, 49eqbrtrd 4056 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  (
( B  /  A
)  -  1 ) ) )
51 eflt 15119 . . . . . . 7  |-  ( ( ( log `  ( B  /  A ) )  e.  RR  /\  (
( B  /  A
)  -  1 )  e.  RR )  -> 
( ( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 )  <->  ( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) ) )
5223, 27, 51syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 )  <->  ( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) ) )
5350, 52mpbird 167 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 ) )
5427recnd 8074 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  CC )
5554mulridd 8062 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  1 )  =  ( ( B  /  A )  -  1 ) )
56 df-e 11833 . . . . . . . . 9  |-  _e  =  ( exp `  1 )
57 reeflog 15207 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( exp `  ( log `  A
) )  =  A )
5820, 57syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  A ) )  =  A )
592, 58breqtrrd 4062 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <_  ( exp `  ( log `  A ) ) )
6056, 59eqbrtrrid 4070 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  1
)  <_  ( exp `  ( log `  A
) ) )
61 efle 15120 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( log `  A )  e.  RR )  -> 
( 1  <_  ( log `  A )  <->  ( exp `  1 )  <_  ( exp `  ( log `  A
) ) ) )
6225, 29, 61sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <_  ( log `  A )  <->  ( exp `  1 )  <_  ( exp `  ( log `  A
) ) ) )
6360, 62mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  <_  ( log `  A ) )
64 posdif 8501 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( B  /  A
)  e.  RR )  ->  ( 1  < 
( B  /  A
)  <->  0  <  (
( B  /  A
)  -  1 ) ) )
6525, 24, 64sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <  ( B  /  A )  <->  0  <  ( ( B  /  A
)  -  1 ) ) )
6644, 65mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  ( ( B  /  A )  - 
1 ) )
67 lemul2 8903 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( log `  A )  e.  RR  /\  (
( ( B  /  A )  -  1 )  e.  RR  /\  0  <  ( ( B  /  A )  - 
1 ) ) )  ->  ( 1  <_ 
( log `  A
)  <->  ( ( ( B  /  A )  -  1 )  x.  1 )  <_  (
( ( B  /  A )  -  1 )  x.  ( log `  A ) ) ) )
6841, 29, 27, 66, 67syl112anc 1253 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <_  ( log `  A )  <->  ( (
( B  /  A
)  -  1 )  x.  1 )  <_ 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) ) ) )
6963, 68mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  1 )  <_  ( (
( B  /  A
)  -  1 )  x.  ( log `  A
) ) )
7055, 69eqbrtrrd 4058 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  <_  ( (
( B  /  A
)  -  1 )  x.  ( log `  A
) ) )
7123, 27, 30, 53, 70ltletrd 8469 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  <  ( ( ( B  /  A )  -  1 )  x.  ( log `  A
) ) )
72 relogdiv 15214 . . . . 5  |-  ( ( B  e.  RR+  /\  A  e.  RR+ )  ->  ( log `  ( B  /  A ) )  =  ( ( log `  B
)  -  ( log `  A ) ) )
7315, 20, 72syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  =  ( ( log `  B )  -  ( log `  A ) ) )
74 1cnd 8061 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  e.  CC )
7529recnd 8074 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  A
)  e.  CC )
7634, 74, 75subdird 8460 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  =  ( ( ( B  /  A )  x.  ( log `  A
) )  -  (
1  x.  ( log `  A ) ) ) )
771recnd 8074 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  CC )
7820rpap0d 9796 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A #  0 )
7977, 38, 75, 78div32apd 8860 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  x.  ( log `  A ) )  =  ( B  x.  ( ( log `  A
)  /  A ) ) )
8075mulid2d 8064 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  ( log `  A ) )  =  ( log `  A
) )
8179, 80oveq12d 5943 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  x.  ( log `  A
) )  -  (
1  x.  ( log `  A ) ) )  =  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) )
8276, 81eqtrd 2229 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  =  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) )
8371, 73, 823brtr3d 4065 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  -  ( log `  A ) )  < 
( ( B  x.  ( ( log `  A
)  /  A ) )  -  ( log `  A ) ) )
84 relogcl 15206 . . . . 5  |-  ( B  e.  RR+  ->  ( log `  B )  e.  RR )
8515, 84syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  B
)  e.  RR )
8629, 20rerpdivcld 9822 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  A
)  /  A )  e.  RR )
871, 86remulcld 8076 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  x.  (
( log `  A
)  /  A ) )  e.  RR )
8885, 87, 29ltsub1d 8600 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  <  ( B  x.  ( ( log `  A
)  /  A ) )  <->  ( ( log `  B )  -  ( log `  A ) )  <  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) ) )
8983, 88mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  B
)  <  ( B  x.  ( ( log `  A
)  /  A ) ) )
9085, 86, 15ltdivmuld 9842 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( log `  B )  /  B
)  <  ( ( log `  A )  /  A )  <->  ( log `  B )  <  ( B  x.  ( ( log `  A )  /  A ) ) ) )
9189, 90mpbird 167 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    < clt 8080    <_ cle 8081    - cmin 8216    / cdiv 8718   RR+crp 9747   expce 11826   _eceu 11827   logclog 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-e 11833  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-cncf 14915  df-limced 15000  df-dvap 15001  df-relog 15202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator