ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logdivlti Unicode version

Theorem logdivlti 15403
Description: The  log x  /  x function is strictly decreasing on the reals greater than  _e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 1004 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  RR )
2 simpl3 1005 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <_  A )
3 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  <  B )
4 ere 12031 . . . . . . . . . . 11  |-  _e  e.  RR
5 simpl1 1003 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  RR )
6 lelttr 8174 . . . . . . . . . . 11  |-  ( ( _e  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( _e  <_  A  /\  A  <  B )  ->  _e  <  B
) )
74, 5, 1, 6mp3an2i 1355 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( _e  <_  A  /\  A  <  B
)  ->  _e  <  B ) )
82, 3, 7mp2and 433 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <  B )
9 epos 12142 . . . . . . . . . 10  |-  0  <  _e
10 0re 8085 . . . . . . . . . . 11  |-  0  e.  RR
11 lttr 8159 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  _e  /\  _e  <  B )  ->  0  <  B
) )
1210, 4, 1, 11mp3an12i 1354 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 0  < 
_e  /\  _e  <  B )  ->  0  <  B ) )
139, 12mpani 430 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( _e  <  B  ->  0  <  B ) )
148, 13mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  B )
151, 14elrpd 9828 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  RR+ )
16 ltletr 8175 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  _e  /\  _e  <_  A )  ->  0  <  A ) )
1710, 4, 5, 16mp3an12i 1354 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 0  < 
_e  /\  _e  <_  A )  ->  0  <  A ) )
189, 17mpani 430 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( _e  <_  A  ->  0  <  A ) )
192, 18mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  A )
205, 19elrpd 9828 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  RR+ )
2115, 20rpdivcld 9849 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  RR+ )
22 relogcl 15384 . . . . . 6  |-  ( ( B  /  A )  e.  RR+  ->  ( log `  ( B  /  A
) )  e.  RR )
2321, 22syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  e.  RR )
241, 20rerpdivcld 9863 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  RR )
25 1re 8084 . . . . . 6  |-  1  e.  RR
26 resubcl 8349 . . . . . 6  |-  ( ( ( B  /  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( B  /  A )  -  1 )  e.  RR )
2724, 25, 26sylancl 413 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  RR )
28 relogcl 15384 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
2920, 28syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  A
)  e.  RR )
3027, 29remulcld 8116 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  e.  RR )
31 reeflog 15385 . . . . . . . . 9  |-  ( ( B  /  A )  e.  RR+  ->  ( exp `  ( log `  ( B  /  A ) ) )  =  ( B  /  A ) )
3221, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  =  ( B  /  A ) )
33 ax-1cn 8031 . . . . . . . . 9  |-  1  e.  CC
3424recnd 8114 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  CC )
35 pncan3 8293 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( B  /  A
)  e.  CC )  ->  ( 1  +  ( ( B  /  A )  -  1 ) )  =  ( B  /  A ) )
3633, 34, 35sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  +  ( ( B  /  A
)  -  1 ) )  =  ( B  /  A ) )
3732, 36eqtr4d 2242 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  =  ( 1  +  ( ( B  /  A )  -  1 ) ) )
385recnd 8114 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  CC )
3938mulid2d 8104 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  A
)  =  A )
4039, 3eqbrtrd 4070 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  A
)  <  B )
41 1red 8100 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  e.  RR )
42 ltmuldiv 8960 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
4341, 1, 5, 19, 42syl112anc 1254 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
4440, 43mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  <  ( B  /  A ) )
45 difrp 9827 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( B  /  A
)  e.  RR )  ->  ( 1  < 
( B  /  A
)  <->  ( ( B  /  A )  - 
1 )  e.  RR+ ) )
4625, 24, 45sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <  ( B  /  A )  <->  ( ( B  /  A )  - 
1 )  e.  RR+ ) )
4744, 46mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  RR+ )
48 efgt1p 12057 . . . . . . . 8  |-  ( ( ( B  /  A
)  -  1 )  e.  RR+  ->  ( 1  +  ( ( B  /  A )  - 
1 ) )  < 
( exp `  (
( B  /  A
)  -  1 ) ) )
4947, 48syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  +  ( ( B  /  A
)  -  1 ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) )
5037, 49eqbrtrd 4070 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  (
( B  /  A
)  -  1 ) ) )
51 eflt 15297 . . . . . . 7  |-  ( ( ( log `  ( B  /  A ) )  e.  RR  /\  (
( B  /  A
)  -  1 )  e.  RR )  -> 
( ( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 )  <->  ( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) ) )
5223, 27, 51syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 )  <->  ( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) ) )
5350, 52mpbird 167 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 ) )
5427recnd 8114 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  CC )
5554mulridd 8102 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  1 )  =  ( ( B  /  A )  -  1 ) )
56 df-e 12010 . . . . . . . . 9  |-  _e  =  ( exp `  1 )
57 reeflog 15385 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( exp `  ( log `  A
) )  =  A )
5820, 57syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  A ) )  =  A )
592, 58breqtrrd 4076 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <_  ( exp `  ( log `  A ) ) )
6056, 59eqbrtrrid 4084 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  1
)  <_  ( exp `  ( log `  A
) ) )
61 efle 15298 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( log `  A )  e.  RR )  -> 
( 1  <_  ( log `  A )  <->  ( exp `  1 )  <_  ( exp `  ( log `  A
) ) ) )
6225, 29, 61sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <_  ( log `  A )  <->  ( exp `  1 )  <_  ( exp `  ( log `  A
) ) ) )
6360, 62mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  <_  ( log `  A ) )
64 posdif 8541 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( B  /  A
)  e.  RR )  ->  ( 1  < 
( B  /  A
)  <->  0  <  (
( B  /  A
)  -  1 ) ) )
6525, 24, 64sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <  ( B  /  A )  <->  0  <  ( ( B  /  A
)  -  1 ) ) )
6644, 65mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  ( ( B  /  A )  - 
1 ) )
67 lemul2 8943 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( log `  A )  e.  RR  /\  (
( ( B  /  A )  -  1 )  e.  RR  /\  0  <  ( ( B  /  A )  - 
1 ) ) )  ->  ( 1  <_ 
( log `  A
)  <->  ( ( ( B  /  A )  -  1 )  x.  1 )  <_  (
( ( B  /  A )  -  1 )  x.  ( log `  A ) ) ) )
6841, 29, 27, 66, 67syl112anc 1254 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <_  ( log `  A )  <->  ( (
( B  /  A
)  -  1 )  x.  1 )  <_ 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) ) ) )
6963, 68mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  1 )  <_  ( (
( B  /  A
)  -  1 )  x.  ( log `  A
) ) )
7055, 69eqbrtrrd 4072 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  <_  ( (
( B  /  A
)  -  1 )  x.  ( log `  A
) ) )
7123, 27, 30, 53, 70ltletrd 8509 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  <  ( ( ( B  /  A )  -  1 )  x.  ( log `  A
) ) )
72 relogdiv 15392 . . . . 5  |-  ( ( B  e.  RR+  /\  A  e.  RR+ )  ->  ( log `  ( B  /  A ) )  =  ( ( log `  B
)  -  ( log `  A ) ) )
7315, 20, 72syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  =  ( ( log `  B )  -  ( log `  A ) ) )
74 1cnd 8101 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  e.  CC )
7529recnd 8114 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  A
)  e.  CC )
7634, 74, 75subdird 8500 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  =  ( ( ( B  /  A )  x.  ( log `  A
) )  -  (
1  x.  ( log `  A ) ) ) )
771recnd 8114 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  CC )
7820rpap0d 9837 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A #  0 )
7977, 38, 75, 78div32apd 8900 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  x.  ( log `  A ) )  =  ( B  x.  ( ( log `  A
)  /  A ) ) )
8075mulid2d 8104 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  ( log `  A ) )  =  ( log `  A
) )
8179, 80oveq12d 5972 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  x.  ( log `  A
) )  -  (
1  x.  ( log `  A ) ) )  =  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) )
8276, 81eqtrd 2239 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  =  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) )
8371, 73, 823brtr3d 4079 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  -  ( log `  A ) )  < 
( ( B  x.  ( ( log `  A
)  /  A ) )  -  ( log `  A ) ) )
84 relogcl 15384 . . . . 5  |-  ( B  e.  RR+  ->  ( log `  B )  e.  RR )
8515, 84syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  B
)  e.  RR )
8629, 20rerpdivcld 9863 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  A
)  /  A )  e.  RR )
871, 86remulcld 8116 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  x.  (
( log `  A
)  /  A ) )  e.  RR )
8885, 87, 29ltsub1d 8640 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  <  ( B  x.  ( ( log `  A
)  /  A ) )  <->  ( ( log `  B )  -  ( log `  A ) )  <  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) ) )
8983, 88mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  B
)  <  ( B  x.  ( ( log `  A
)  /  A ) ) )
9085, 86, 15ltdivmuld 9883 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( log `  B )  /  B
)  <  ( ( log `  A )  /  A )  <->  ( log `  B )  <  ( B  x.  ( ( log `  A )  /  A ) ) ) )
9189, 90mpbird 167 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4048   ` cfv 5277  (class class class)co 5954   CCcc 7936   RRcr 7937   0cc0 7938   1c1 7939    + caddc 7941    x. cmul 7943    < clt 8120    <_ cle 8121    - cmin 8256    / cdiv 8758   RR+crp 9788   expce 12003   _eceu 12004   logclog 15378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058  ax-pre-suploc 8059  ax-addf 8060  ax-mulf 8061
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-disj 4025  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-of 6168  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-oadd 6516  df-er 6630  df-map 6747  df-pm 6748  df-en 6838  df-dom 6839  df-fin 6840  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-xneg 9907  df-xadd 9908  df-ioo 10027  df-ico 10029  df-icc 10030  df-fz 10144  df-fzo 10278  df-seqfrec 10606  df-exp 10697  df-fac 10884  df-bc 10906  df-ihash 10934  df-shft 11176  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-sumdc 11715  df-ef 12009  df-e 12010  df-rest 13123  df-topgen 13142  df-psmet 14355  df-xmet 14356  df-met 14357  df-bl 14358  df-mopn 14359  df-top 14520  df-topon 14533  df-bases 14565  df-ntr 14618  df-cn 14710  df-cnp 14711  df-tx 14775  df-cncf 15093  df-limced 15178  df-dvap 15179  df-relog 15380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator