ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logdivlti Unicode version

Theorem logdivlti 14195
Description: The  log x  /  x function is strictly decreasing on the reals greater than  _e. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
logdivlti  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )

Proof of Theorem logdivlti
StepHypRef Expression
1 simpl2 1001 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  RR )
2 simpl3 1002 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <_  A )
3 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  <  B )
4 ere 11673 . . . . . . . . . . 11  |-  _e  e.  RR
5 simpl1 1000 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  RR )
6 lelttr 8044 . . . . . . . . . . 11  |-  ( ( _e  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( _e  <_  A  /\  A  <  B )  ->  _e  <  B
) )
74, 5, 1, 6mp3an2i 1342 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( _e  <_  A  /\  A  <  B
)  ->  _e  <  B ) )
82, 3, 7mp2and 433 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <  B )
9 epos 11783 . . . . . . . . . 10  |-  0  <  _e
10 0re 7956 . . . . . . . . . . 11  |-  0  e.  RR
11 lttr 8029 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  _e  /\  _e  <  B )  ->  0  <  B
) )
1210, 4, 1, 11mp3an12i 1341 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 0  < 
_e  /\  _e  <  B )  ->  0  <  B ) )
139, 12mpani 430 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( _e  <  B  ->  0  <  B ) )
148, 13mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  B )
151, 14elrpd 9691 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  RR+ )
16 ltletr 8045 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  _e  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  _e  /\  _e  <_  A )  ->  0  <  A ) )
1710, 4, 5, 16mp3an12i 1341 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 0  < 
_e  /\  _e  <_  A )  ->  0  <  A ) )
189, 17mpani 430 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( _e  <_  A  ->  0  <  A ) )
192, 18mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  A )
205, 19elrpd 9691 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  RR+ )
2115, 20rpdivcld 9712 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  RR+ )
22 relogcl 14176 . . . . . 6  |-  ( ( B  /  A )  e.  RR+  ->  ( log `  ( B  /  A
) )  e.  RR )
2321, 22syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  e.  RR )
241, 20rerpdivcld 9726 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  RR )
25 1re 7955 . . . . . 6  |-  1  e.  RR
26 resubcl 8219 . . . . . 6  |-  ( ( ( B  /  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( B  /  A )  -  1 )  e.  RR )
2724, 25, 26sylancl 413 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  RR )
28 relogcl 14176 . . . . . . 7  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
2920, 28syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  A
)  e.  RR )
3027, 29remulcld 7986 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  e.  RR )
31 reeflog 14177 . . . . . . . . 9  |-  ( ( B  /  A )  e.  RR+  ->  ( exp `  ( log `  ( B  /  A ) ) )  =  ( B  /  A ) )
3221, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  =  ( B  /  A ) )
33 ax-1cn 7903 . . . . . . . . 9  |-  1  e.  CC
3424recnd 7984 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  /  A
)  e.  CC )
35 pncan3 8163 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( B  /  A
)  e.  CC )  ->  ( 1  +  ( ( B  /  A )  -  1 ) )  =  ( B  /  A ) )
3633, 34, 35sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  +  ( ( B  /  A
)  -  1 ) )  =  ( B  /  A ) )
3732, 36eqtr4d 2213 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  =  ( 1  +  ( ( B  /  A )  -  1 ) ) )
385recnd 7984 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A  e.  CC )
3938mulid2d 7974 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  A
)  =  A )
4039, 3eqbrtrd 4025 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  A
)  <  B )
41 1red 7971 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  e.  RR )
42 ltmuldiv 8829 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
4341, 1, 5, 19, 42syl112anc 1242 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
4440, 43mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  <  ( B  /  A ) )
45 difrp 9690 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( B  /  A
)  e.  RR )  ->  ( 1  < 
( B  /  A
)  <->  ( ( B  /  A )  - 
1 )  e.  RR+ ) )
4625, 24, 45sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <  ( B  /  A )  <->  ( ( B  /  A )  - 
1 )  e.  RR+ ) )
4744, 46mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  RR+ )
48 efgt1p 11699 . . . . . . . 8  |-  ( ( ( B  /  A
)  -  1 )  e.  RR+  ->  ( 1  +  ( ( B  /  A )  - 
1 ) )  < 
( exp `  (
( B  /  A
)  -  1 ) ) )
4947, 48syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  +  ( ( B  /  A
)  -  1 ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) )
5037, 49eqbrtrd 4025 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  (
( B  /  A
)  -  1 ) ) )
51 eflt 14089 . . . . . . 7  |-  ( ( ( log `  ( B  /  A ) )  e.  RR  /\  (
( B  /  A
)  -  1 )  e.  RR )  -> 
( ( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 )  <->  ( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) ) )
5223, 27, 51syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 )  <->  ( exp `  ( log `  ( B  /  A ) ) )  <  ( exp `  ( ( B  /  A )  -  1 ) ) ) )
5350, 52mpbird 167 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  <  ( ( B  /  A )  - 
1 ) )
5427recnd 7984 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  e.  CC )
5554mulridd 7973 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  1 )  =  ( ( B  /  A )  -  1 ) )
56 df-e 11652 . . . . . . . . 9  |-  _e  =  ( exp `  1 )
57 reeflog 14177 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  ( exp `  ( log `  A
) )  =  A )
5820, 57syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  ( log `  A ) )  =  A )
592, 58breqtrrd 4031 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  _e  <_  ( exp `  ( log `  A ) ) )
6056, 59eqbrtrrid 4039 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( exp `  1
)  <_  ( exp `  ( log `  A
) ) )
61 efle 14090 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( log `  A )  e.  RR )  -> 
( 1  <_  ( log `  A )  <->  ( exp `  1 )  <_  ( exp `  ( log `  A
) ) ) )
6225, 29, 61sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <_  ( log `  A )  <->  ( exp `  1 )  <_  ( exp `  ( log `  A
) ) ) )
6360, 62mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  <_  ( log `  A ) )
64 posdif 8410 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( B  /  A
)  e.  RR )  ->  ( 1  < 
( B  /  A
)  <->  0  <  (
( B  /  A
)  -  1 ) ) )
6525, 24, 64sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <  ( B  /  A )  <->  0  <  ( ( B  /  A
)  -  1 ) ) )
6644, 65mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
0  <  ( ( B  /  A )  - 
1 ) )
67 lemul2 8812 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( log `  A )  e.  RR  /\  (
( ( B  /  A )  -  1 )  e.  RR  /\  0  <  ( ( B  /  A )  - 
1 ) ) )  ->  ( 1  <_ 
( log `  A
)  <->  ( ( ( B  /  A )  -  1 )  x.  1 )  <_  (
( ( B  /  A )  -  1 )  x.  ( log `  A ) ) ) )
6841, 29, 27, 66, 67syl112anc 1242 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  <_  ( log `  A )  <->  ( (
( B  /  A
)  -  1 )  x.  1 )  <_ 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) ) ) )
6963, 68mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  1 )  <_  ( (
( B  /  A
)  -  1 )  x.  ( log `  A
) ) )
7055, 69eqbrtrrd 4027 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  -  1 )  <_  ( (
( B  /  A
)  -  1 )  x.  ( log `  A
) ) )
7123, 27, 30, 53, 70ltletrd 8378 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  <  ( ( ( B  /  A )  -  1 )  x.  ( log `  A
) ) )
72 relogdiv 14184 . . . . 5  |-  ( ( B  e.  RR+  /\  A  e.  RR+ )  ->  ( log `  ( B  /  A ) )  =  ( ( log `  B
)  -  ( log `  A ) ) )
7315, 20, 72syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  ( B  /  A ) )  =  ( ( log `  B )  -  ( log `  A ) ) )
74 1cnd 7972 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
1  e.  CC )
7529recnd 7984 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  A
)  e.  CC )
7634, 74, 75subdird 8370 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  =  ( ( ( B  /  A )  x.  ( log `  A
) )  -  (
1  x.  ( log `  A ) ) ) )
771recnd 7984 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  B  e.  CC )
7820rpap0d 9700 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  A #  0 )
7977, 38, 75, 78div32apd 8769 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( B  /  A )  x.  ( log `  A ) )  =  ( B  x.  ( ( log `  A
)  /  A ) ) )
8075mulid2d 7974 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( 1  x.  ( log `  A ) )  =  ( log `  A
) )
8179, 80oveq12d 5892 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  x.  ( log `  A
) )  -  (
1  x.  ( log `  A ) ) )  =  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) )
8276, 81eqtrd 2210 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( B  /  A )  - 
1 )  x.  ( log `  A ) )  =  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) )
8371, 73, 823brtr3d 4034 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  -  ( log `  A ) )  < 
( ( B  x.  ( ( log `  A
)  /  A ) )  -  ( log `  A ) ) )
84 relogcl 14176 . . . . 5  |-  ( B  e.  RR+  ->  ( log `  B )  e.  RR )
8515, 84syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  B
)  e.  RR )
8629, 20rerpdivcld 9726 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  A
)  /  A )  e.  RR )
871, 86remulcld 7986 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( B  x.  (
( log `  A
)  /  A ) )  e.  RR )
8885, 87, 29ltsub1d 8509 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  <  ( B  x.  ( ( log `  A
)  /  A ) )  <->  ( ( log `  B )  -  ( log `  A ) )  <  ( ( B  x.  ( ( log `  A )  /  A
) )  -  ( log `  A ) ) ) )
8983, 88mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( log `  B
)  <  ( B  x.  ( ( log `  A
)  /  A ) ) )
9085, 86, 15ltdivmuld 9746 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( ( log `  B )  /  B
)  <  ( ( log `  A )  /  A )  <->  ( log `  B )  <  ( B  x.  ( ( log `  A )  /  A ) ) ) )
9189, 90mpbird 167 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  -> 
( ( log `  B
)  /  B )  <  ( ( log `  A )  /  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   CCcc 7808   RRcr 7809   0cc0 7810   1c1 7811    + caddc 7813    x. cmul 7815    < clt 7990    <_ cle 7991    - cmin 8126    / cdiv 8627   RR+crp 9651   expce 11645   _eceu 11646   logclog 14170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930  ax-pre-suploc 7931  ax-addf 7932  ax-mulf 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-disj 3981  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-of 6082  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-oadd 6420  df-er 6534  df-map 6649  df-pm 6650  df-en 6740  df-dom 6741  df-fin 6742  df-sup 6982  df-inf 6983  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-q 9618  df-rp 9652  df-xneg 9770  df-xadd 9771  df-ioo 9890  df-ico 9892  df-icc 9893  df-fz 10007  df-fzo 10140  df-seqfrec 10443  df-exp 10517  df-fac 10701  df-bc 10723  df-ihash 10751  df-shft 10819  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-clim 11282  df-sumdc 11357  df-ef 11651  df-e 11652  df-rest 12680  df-topgen 12699  df-psmet 13338  df-xmet 13339  df-met 13340  df-bl 13341  df-mopn 13342  df-top 13389  df-topon 13402  df-bases 13434  df-ntr 13489  df-cn 13581  df-cnp 13582  df-tx 13646  df-cncf 13951  df-limced 14018  df-dvap 14019  df-relog 14172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator