| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > logdivlti | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| logdivlti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1025 |
. . . . . . . 8
| |
| 2 | simpl3 1026 |
. . . . . . . . . 10
| |
| 3 | simpr 110 |
. . . . . . . . . 10
| |
| 4 | ere 12167 |
. . . . . . . . . . 11
| |
| 5 | simpl1 1024 |
. . . . . . . . . . 11
| |
| 6 | lelttr 8223 |
. . . . . . . . . . 11
| |
| 7 | 4, 5, 1, 6 | mp3an2i 1376 |
. . . . . . . . . 10
|
| 8 | 2, 3, 7 | mp2and 433 |
. . . . . . . . 9
|
| 9 | epos 12278 |
. . . . . . . . . 10
| |
| 10 | 0re 8134 |
. . . . . . . . . . 11
| |
| 11 | lttr 8208 |
. . . . . . . . . . 11
| |
| 12 | 10, 4, 1, 11 | mp3an12i 1375 |
. . . . . . . . . 10
|
| 13 | 9, 12 | mpani 430 |
. . . . . . . . 9
|
| 14 | 8, 13 | mpd 13 |
. . . . . . . 8
|
| 15 | 1, 14 | elrpd 9877 |
. . . . . . 7
|
| 16 | ltletr 8224 |
. . . . . . . . . . 11
| |
| 17 | 10, 4, 5, 16 | mp3an12i 1375 |
. . . . . . . . . 10
|
| 18 | 9, 17 | mpani 430 |
. . . . . . . . 9
|
| 19 | 2, 18 | mpd 13 |
. . . . . . . 8
|
| 20 | 5, 19 | elrpd 9877 |
. . . . . . 7
|
| 21 | 15, 20 | rpdivcld 9898 |
. . . . . 6
|
| 22 | relogcl 15521 |
. . . . . 6
| |
| 23 | 21, 22 | syl 14 |
. . . . 5
|
| 24 | 1, 20 | rerpdivcld 9912 |
. . . . . 6
|
| 25 | 1re 8133 |
. . . . . 6
| |
| 26 | resubcl 8398 |
. . . . . 6
| |
| 27 | 24, 25, 26 | sylancl 413 |
. . . . 5
|
| 28 | relogcl 15521 |
. . . . . . 7
| |
| 29 | 20, 28 | syl 14 |
. . . . . 6
|
| 30 | 27, 29 | remulcld 8165 |
. . . . 5
|
| 31 | reeflog 15522 |
. . . . . . . . 9
| |
| 32 | 21, 31 | syl 14 |
. . . . . . . 8
|
| 33 | ax-1cn 8080 |
. . . . . . . . 9
| |
| 34 | 24 | recnd 8163 |
. . . . . . . . 9
|
| 35 | pncan3 8342 |
. . . . . . . . 9
| |
| 36 | 33, 34, 35 | sylancr 414 |
. . . . . . . 8
|
| 37 | 32, 36 | eqtr4d 2265 |
. . . . . . 7
|
| 38 | 5 | recnd 8163 |
. . . . . . . . . . . 12
|
| 39 | 38 | mulid2d 8153 |
. . . . . . . . . . 11
|
| 40 | 39, 3 | eqbrtrd 4104 |
. . . . . . . . . 10
|
| 41 | 1red 8149 |
. . . . . . . . . . 11
| |
| 42 | ltmuldiv 9009 |
. . . . . . . . . . 11
| |
| 43 | 41, 1, 5, 19, 42 | syl112anc 1275 |
. . . . . . . . . 10
|
| 44 | 40, 43 | mpbid 147 |
. . . . . . . . 9
|
| 45 | difrp 9876 |
. . . . . . . . . 10
| |
| 46 | 25, 24, 45 | sylancr 414 |
. . . . . . . . 9
|
| 47 | 44, 46 | mpbid 147 |
. . . . . . . 8
|
| 48 | efgt1p 12193 |
. . . . . . . 8
| |
| 49 | 47, 48 | syl 14 |
. . . . . . 7
|
| 50 | 37, 49 | eqbrtrd 4104 |
. . . . . 6
|
| 51 | eflt 15434 |
. . . . . . 7
| |
| 52 | 23, 27, 51 | syl2anc 411 |
. . . . . 6
|
| 53 | 50, 52 | mpbird 167 |
. . . . 5
|
| 54 | 27 | recnd 8163 |
. . . . . . 7
|
| 55 | 54 | mulridd 8151 |
. . . . . 6
|
| 56 | df-e 12146 |
. . . . . . . . 9
| |
| 57 | reeflog 15522 |
. . . . . . . . . . 11
| |
| 58 | 20, 57 | syl 14 |
. . . . . . . . . 10
|
| 59 | 2, 58 | breqtrrd 4110 |
. . . . . . . . 9
|
| 60 | 56, 59 | eqbrtrrid 4118 |
. . . . . . . 8
|
| 61 | efle 15435 |
. . . . . . . . 9
| |
| 62 | 25, 29, 61 | sylancr 414 |
. . . . . . . 8
|
| 63 | 60, 62 | mpbird 167 |
. . . . . . 7
|
| 64 | posdif 8590 |
. . . . . . . . . 10
| |
| 65 | 25, 24, 64 | sylancr 414 |
. . . . . . . . 9
|
| 66 | 44, 65 | mpbid 147 |
. . . . . . . 8
|
| 67 | lemul2 8992 |
. . . . . . . 8
| |
| 68 | 41, 29, 27, 66, 67 | syl112anc 1275 |
. . . . . . 7
|
| 69 | 63, 68 | mpbid 147 |
. . . . . 6
|
| 70 | 55, 69 | eqbrtrrd 4106 |
. . . . 5
|
| 71 | 23, 27, 30, 53, 70 | ltletrd 8558 |
. . . 4
|
| 72 | relogdiv 15529 |
. . . . 5
| |
| 73 | 15, 20, 72 | syl2anc 411 |
. . . 4
|
| 74 | 1cnd 8150 |
. . . . . 6
| |
| 75 | 29 | recnd 8163 |
. . . . . 6
|
| 76 | 34, 74, 75 | subdird 8549 |
. . . . 5
|
| 77 | 1 | recnd 8163 |
. . . . . . 7
|
| 78 | 20 | rpap0d 9886 |
. . . . . . 7
|
| 79 | 77, 38, 75, 78 | div32apd 8949 |
. . . . . 6
|
| 80 | 75 | mulid2d 8153 |
. . . . . 6
|
| 81 | 79, 80 | oveq12d 6012 |
. . . . 5
|
| 82 | 76, 81 | eqtrd 2262 |
. . . 4
|
| 83 | 71, 73, 82 | 3brtr3d 4113 |
. . 3
|
| 84 | relogcl 15521 |
. . . . 5
| |
| 85 | 15, 84 | syl 14 |
. . . 4
|
| 86 | 29, 20 | rerpdivcld 9912 |
. . . . 5
|
| 87 | 1, 86 | remulcld 8165 |
. . . 4
|
| 88 | 85, 87, 29 | ltsub1d 8689 |
. . 3
|
| 89 | 83, 88 | mpbird 167 |
. 2
|
| 90 | 85, 86, 15 | ltdivmuld 9932 |
. 2
|
| 91 | 89, 90 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 ax-pre-suploc 8108 ax-addf 8109 ax-mulf 8110 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-map 6787 df-pm 6788 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-xneg 9956 df-xadd 9957 df-ioo 10076 df-ico 10078 df-icc 10079 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-bc 10957 df-ihash 10985 df-shft 11312 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 df-ef 12145 df-e 12146 df-rest 13260 df-topgen 13279 df-psmet 14492 df-xmet 14493 df-met 14494 df-bl 14495 df-mopn 14496 df-top 14657 df-topon 14670 df-bases 14702 df-ntr 14755 df-cn 14847 df-cnp 14848 df-tx 14912 df-cncf 15230 df-limced 15315 df-dvap 15316 df-relog 15517 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |