Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version |
Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
Ref | Expression |
---|---|
nngt0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8860 | . 2 | |
2 | nnge1 8876 | . 2 | |
3 | 0lt1 8021 | . . 3 | |
4 | 0re 7895 | . . . 4 | |
5 | 1re 7894 | . . . 4 | |
6 | ltletr 7984 | . . . 4 | |
7 | 4, 5, 6 | mp3an12 1317 | . . 3 |
8 | 3, 7 | mpani 427 | . 2 |
9 | 1, 2, 8 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 class class class wbr 3981 cr 7748 cc0 7749 c1 7750 clt 7929 cle 7930 cn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-iota 5152 df-fv 5195 df-ov 5844 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-inn 8854 |
This theorem is referenced by: nnap0 8882 nngt0i 8883 nn2ge 8886 nn1gt1 8887 nnsub 8892 nngt0d 8897 nnrecl 9108 nn0ge0 9135 0mnnnnn0 9142 elnnnn0b 9154 elnnz 9197 elnn0z 9200 ztri3or0 9229 nnm1ge0 9273 gtndiv 9282 elpq 9582 elpqb 9583 nnrp 9595 nnledivrp 9698 fzo1fzo0n0 10114 ubmelfzo 10131 adddivflid 10223 flltdivnn0lt 10235 intfracq 10251 zmodcl 10275 zmodfz 10277 zmodid2 10283 m1modnnsub1 10301 expnnval 10454 nnlesq 10554 facdiv 10647 faclbnd 10650 bc0k 10665 dvdsval3 11727 nndivdvds 11732 moddvds 11735 evennn2n 11816 nnoddm1d2 11843 divalglemnn 11851 ndvdssub 11863 ndvdsadd 11864 modgcd 11920 sqgcd 11958 lcmgcdlem 12005 qredeu 12025 divdenle 12125 hashgcdlem 12166 oddprm 12187 pythagtriplem12 12203 pythagtriplem13 12204 pythagtriplem14 12205 pythagtriplem16 12207 pythagtriplem19 12210 pc2dvds 12257 fldivp1 12274 znnen 12327 exmidunben 12355 lgsval4a 13523 lgsne0 13539 |
Copyright terms: Public domain | W3C validator |