![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version |
Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
Ref | Expression |
---|---|
nngt0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8991 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnge1 9007 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 0lt1 8148 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 0re 8021 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 1re 8020 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | ltletr 8111 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | mp3an12 1338 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | mpani 430 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 2, 8 | sylc 62 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-inn 8985 |
This theorem is referenced by: nnap0 9013 nngt0i 9014 nn2ge 9017 nn1gt1 9018 nnsub 9023 nngt0d 9028 nnrecl 9241 nn0ge0 9268 0mnnnnn0 9275 elnnnn0b 9287 elnnz 9330 elnn0z 9333 ztri3or0 9362 nnm1ge0 9406 gtndiv 9415 elpq 9717 elpqb 9718 nnrp 9732 nnledivrp 9835 fzo1fzo0n0 10253 ubmelfzo 10270 adddivflid 10364 flltdivnn0lt 10376 intfracq 10394 zmodcl 10418 zmodfz 10420 zmodid2 10426 m1modnnsub1 10444 expnnval 10616 nnlesq 10717 facdiv 10812 faclbnd 10815 bc0k 10830 dvdsval3 11937 nndivdvds 11942 moddvds 11945 evennn2n 12027 nnoddm1d2 12054 divalglemnn 12062 ndvdssub 12074 ndvdsadd 12075 modgcd 12131 sqgcd 12169 lcmgcdlem 12218 qredeu 12238 divdenle 12338 hashgcdlem 12379 oddprm 12400 pythagtriplem12 12416 pythagtriplem13 12417 pythagtriplem14 12418 pythagtriplem16 12420 pythagtriplem19 12423 pc2dvds 12471 fldivp1 12489 znnen 12558 exmidunben 12586 mulgnn 13199 mulgnegnn 13205 mulgmodid 13234 znf1o 14150 znidomb 14157 lgsval4a 15179 lgsne0 15195 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |