| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9014 |
. 2
| |
| 2 | nnge1 9030 |
. 2
| |
| 3 | 0lt1 8170 |
. . 3
| |
| 4 | 0re 8043 |
. . . 4
| |
| 5 | 1re 8042 |
. . . 4
| |
| 6 | ltletr 8133 |
. . . 4
| |
| 7 | 4, 5, 6 | mp3an12 1338 |
. . 3
|
| 8 | 3, 7 | mpani 430 |
. 2
|
| 9 | 1, 2, 8 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-inn 9008 |
| This theorem is referenced by: nnap0 9036 nngt0i 9037 nn2ge 9040 nn1gt1 9041 nnsub 9046 nngt0d 9051 nnrecl 9264 nn0ge0 9291 0mnnnnn0 9298 elnnnn0b 9310 elnnz 9353 elnn0z 9356 ztri3or0 9385 nnm1ge0 9429 gtndiv 9438 elpq 9740 elpqb 9741 nnrp 9755 nnledivrp 9858 fzo1fzo0n0 10276 ubmelfzo 10293 adddivflid 10399 flltdivnn0lt 10411 intfracq 10429 zmodcl 10453 zmodfz 10455 zmodid2 10461 m1modnnsub1 10479 expnnval 10651 nnlesq 10752 facdiv 10847 faclbnd 10850 bc0k 10865 dvdsval3 11973 nndivdvds 11978 moddvds 11981 evennn2n 12065 nnoddm1d2 12092 divalglemnn 12100 ndvdssub 12112 ndvdsadd 12113 modgcd 12183 sqgcd 12221 lcmgcdlem 12270 qredeu 12290 divdenle 12390 hashgcdlem 12431 oddprm 12453 pythagtriplem12 12469 pythagtriplem13 12470 pythagtriplem14 12471 pythagtriplem16 12473 pythagtriplem19 12476 pc2dvds 12524 fldivp1 12542 modsubi 12613 znnen 12640 exmidunben 12668 mulgnn 13332 mulgnegnn 13338 mulgmodid 13367 znf1o 14283 znidomb 14290 lgsval4a 15347 lgsne0 15363 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |