| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9117 |
. 2
| |
| 2 | nnge1 9133 |
. 2
| |
| 3 | 0lt1 8273 |
. . 3
| |
| 4 | 0re 8146 |
. . . 4
| |
| 5 | 1re 8145 |
. . . 4
| |
| 6 | ltletr 8236 |
. . . 4
| |
| 7 | 4, 5, 6 | mp3an12 1361 |
. . 3
|
| 8 | 3, 7 | mpani 430 |
. 2
|
| 9 | 1, 2, 8 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-inn 9111 |
| This theorem is referenced by: nnap0 9139 nngt0i 9140 nn2ge 9143 nn1gt1 9144 nnsub 9149 nngt0d 9154 nnrecl 9367 nn0ge0 9394 0mnnnnn0 9401 elnnnn0b 9413 elnnz 9456 elnn0z 9459 ztri3or0 9488 nnnle0 9495 nnm1ge0 9533 gtndiv 9542 elpq 9844 elpqb 9845 nnrp 9859 nnledivrp 9962 fzo1fzo0n0 10383 ubmelfzo 10406 adddivflid 10512 flltdivnn0lt 10524 intfracq 10542 zmodcl 10566 zmodfz 10568 zmodid2 10574 m1modnnsub1 10592 expnnval 10764 nnlesq 10865 facdiv 10960 faclbnd 10963 bc0k 10978 ccatval21sw 11140 ccats1pfxeqrex 11247 dvdsval3 12302 nndivdvds 12307 moddvds 12310 evennn2n 12394 nnoddm1d2 12421 divalglemnn 12429 ndvdssub 12441 ndvdsadd 12442 modgcd 12512 sqgcd 12550 lcmgcdlem 12599 qredeu 12619 divdenle 12719 hashgcdlem 12760 oddprm 12782 pythagtriplem12 12798 pythagtriplem13 12799 pythagtriplem14 12800 pythagtriplem16 12802 pythagtriplem19 12805 pc2dvds 12853 fldivp1 12871 modsubi 12942 znnen 12969 exmidunben 12997 mulgnn 13663 mulgnegnn 13669 mulgmodid 13698 znf1o 14615 znidomb 14622 lgsval4a 15701 lgsne0 15717 gausslemma2dlem1a 15737 |
| Copyright terms: Public domain | W3C validator |