| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9043 |
. 2
| |
| 2 | nnge1 9059 |
. 2
| |
| 3 | 0lt1 8199 |
. . 3
| |
| 4 | 0re 8072 |
. . . 4
| |
| 5 | 1re 8071 |
. . . 4
| |
| 6 | ltletr 8162 |
. . . 4
| |
| 7 | 4, 5, 6 | mp3an12 1340 |
. . 3
|
| 8 | 3, 7 | mpani 430 |
. 2
|
| 9 | 1, 2, 8 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-inn 9037 |
| This theorem is referenced by: nnap0 9065 nngt0i 9066 nn2ge 9069 nn1gt1 9070 nnsub 9075 nngt0d 9080 nnrecl 9293 nn0ge0 9320 0mnnnnn0 9327 elnnnn0b 9339 elnnz 9382 elnn0z 9385 ztri3or0 9414 nnnle0 9421 nnm1ge0 9459 gtndiv 9468 elpq 9770 elpqb 9771 nnrp 9785 nnledivrp 9888 fzo1fzo0n0 10307 ubmelfzo 10329 adddivflid 10435 flltdivnn0lt 10447 intfracq 10465 zmodcl 10489 zmodfz 10491 zmodid2 10497 m1modnnsub1 10515 expnnval 10687 nnlesq 10788 facdiv 10883 faclbnd 10886 bc0k 10901 ccatval21sw 11061 dvdsval3 12102 nndivdvds 12107 moddvds 12110 evennn2n 12194 nnoddm1d2 12221 divalglemnn 12229 ndvdssub 12241 ndvdsadd 12242 modgcd 12312 sqgcd 12350 lcmgcdlem 12399 qredeu 12419 divdenle 12519 hashgcdlem 12560 oddprm 12582 pythagtriplem12 12598 pythagtriplem13 12599 pythagtriplem14 12600 pythagtriplem16 12602 pythagtriplem19 12605 pc2dvds 12653 fldivp1 12671 modsubi 12742 znnen 12769 exmidunben 12797 mulgnn 13462 mulgnegnn 13468 mulgmodid 13497 znf1o 14413 znidomb 14420 lgsval4a 15499 lgsne0 15515 gausslemma2dlem1a 15535 |
| Copyright terms: Public domain | W3C validator |