| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9045 |
. 2
| |
| 2 | nnge1 9061 |
. 2
| |
| 3 | 0lt1 8201 |
. . 3
| |
| 4 | 0re 8074 |
. . . 4
| |
| 5 | 1re 8073 |
. . . 4
| |
| 6 | ltletr 8164 |
. . . 4
| |
| 7 | 4, 5, 6 | mp3an12 1340 |
. . 3
|
| 8 | 3, 7 | mpani 430 |
. 2
|
| 9 | 1, 2, 8 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-iota 5233 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-inn 9039 |
| This theorem is referenced by: nnap0 9067 nngt0i 9068 nn2ge 9071 nn1gt1 9072 nnsub 9077 nngt0d 9082 nnrecl 9295 nn0ge0 9322 0mnnnnn0 9329 elnnnn0b 9341 elnnz 9384 elnn0z 9387 ztri3or0 9416 nnnle0 9423 nnm1ge0 9461 gtndiv 9470 elpq 9772 elpqb 9773 nnrp 9787 nnledivrp 9890 fzo1fzo0n0 10309 ubmelfzo 10331 adddivflid 10437 flltdivnn0lt 10449 intfracq 10467 zmodcl 10491 zmodfz 10493 zmodid2 10499 m1modnnsub1 10517 expnnval 10689 nnlesq 10790 facdiv 10885 faclbnd 10888 bc0k 10903 ccatval21sw 11064 dvdsval3 12135 nndivdvds 12140 moddvds 12143 evennn2n 12227 nnoddm1d2 12254 divalglemnn 12262 ndvdssub 12274 ndvdsadd 12275 modgcd 12345 sqgcd 12383 lcmgcdlem 12432 qredeu 12452 divdenle 12552 hashgcdlem 12593 oddprm 12615 pythagtriplem12 12631 pythagtriplem13 12632 pythagtriplem14 12633 pythagtriplem16 12635 pythagtriplem19 12638 pc2dvds 12686 fldivp1 12704 modsubi 12775 znnen 12802 exmidunben 12830 mulgnn 13495 mulgnegnn 13501 mulgmodid 13530 znf1o 14446 znidomb 14453 lgsval4a 15532 lgsne0 15548 gausslemma2dlem1a 15568 |
| Copyright terms: Public domain | W3C validator |