| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 8997 |
. 2
| |
| 2 | nnge1 9013 |
. 2
| |
| 3 | 0lt1 8153 |
. . 3
| |
| 4 | 0re 8026 |
. . . 4
| |
| 5 | 1re 8025 |
. . . 4
| |
| 6 | ltletr 8116 |
. . . 4
| |
| 7 | 4, 5, 6 | mp3an12 1338 |
. . 3
|
| 8 | 3, 7 | mpani 430 |
. 2
|
| 9 | 1, 2, 8 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 |
| This theorem is referenced by: nnap0 9019 nngt0i 9020 nn2ge 9023 nn1gt1 9024 nnsub 9029 nngt0d 9034 nnrecl 9247 nn0ge0 9274 0mnnnnn0 9281 elnnnn0b 9293 elnnz 9336 elnn0z 9339 ztri3or0 9368 nnm1ge0 9412 gtndiv 9421 elpq 9723 elpqb 9724 nnrp 9738 nnledivrp 9841 fzo1fzo0n0 10259 ubmelfzo 10276 adddivflid 10382 flltdivnn0lt 10394 intfracq 10412 zmodcl 10436 zmodfz 10438 zmodid2 10444 m1modnnsub1 10462 expnnval 10634 nnlesq 10735 facdiv 10830 faclbnd 10833 bc0k 10848 dvdsval3 11956 nndivdvds 11961 moddvds 11964 evennn2n 12048 nnoddm1d2 12075 divalglemnn 12083 ndvdssub 12095 ndvdsadd 12096 modgcd 12158 sqgcd 12196 lcmgcdlem 12245 qredeu 12265 divdenle 12365 hashgcdlem 12406 oddprm 12428 pythagtriplem12 12444 pythagtriplem13 12445 pythagtriplem14 12446 pythagtriplem16 12448 pythagtriplem19 12451 pc2dvds 12499 fldivp1 12517 modsubi 12588 znnen 12615 exmidunben 12643 mulgnn 13256 mulgnegnn 13262 mulgmodid 13291 znf1o 14207 znidomb 14214 lgsval4a 15263 lgsne0 15279 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |