| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9000 |
. 2
| |
| 2 | nnge1 9016 |
. 2
| |
| 3 | 0lt1 8156 |
. . 3
| |
| 4 | 0re 8029 |
. . . 4
| |
| 5 | 1re 8028 |
. . . 4
| |
| 6 | ltletr 8119 |
. . . 4
| |
| 7 | 4, 5, 6 | mp3an12 1338 |
. . 3
|
| 8 | 3, 7 | mpani 430 |
. 2
|
| 9 | 1, 2, 8 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1re 7976 ax-addrcl 7979 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5926 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-inn 8994 |
| This theorem is referenced by: nnap0 9022 nngt0i 9023 nn2ge 9026 nn1gt1 9027 nnsub 9032 nngt0d 9037 nnrecl 9250 nn0ge0 9277 0mnnnnn0 9284 elnnnn0b 9296 elnnz 9339 elnn0z 9342 ztri3or0 9371 nnm1ge0 9415 gtndiv 9424 elpq 9726 elpqb 9727 nnrp 9741 nnledivrp 9844 fzo1fzo0n0 10262 ubmelfzo 10279 adddivflid 10385 flltdivnn0lt 10397 intfracq 10415 zmodcl 10439 zmodfz 10441 zmodid2 10447 m1modnnsub1 10465 expnnval 10637 nnlesq 10738 facdiv 10833 faclbnd 10836 bc0k 10851 dvdsval3 11959 nndivdvds 11964 moddvds 11967 evennn2n 12051 nnoddm1d2 12078 divalglemnn 12086 ndvdssub 12098 ndvdsadd 12099 modgcd 12169 sqgcd 12207 lcmgcdlem 12256 qredeu 12276 divdenle 12376 hashgcdlem 12417 oddprm 12439 pythagtriplem12 12455 pythagtriplem13 12456 pythagtriplem14 12457 pythagtriplem16 12459 pythagtriplem19 12462 pc2dvds 12510 fldivp1 12528 modsubi 12599 znnen 12626 exmidunben 12654 mulgnn 13282 mulgnegnn 13288 mulgmodid 13317 znf1o 14233 znidomb 14240 lgsval4a 15289 lgsne0 15305 gausslemma2dlem1a 15325 |
| Copyright terms: Public domain | W3C validator |