![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version |
Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
Ref | Expression |
---|---|
nngt0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8989 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnge1 9005 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 0lt1 8146 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 0re 8019 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 1re 8018 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | ltletr 8109 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | mp3an12 1338 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | mpani 430 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 2, 8 | sylc 62 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 |
This theorem is referenced by: nnap0 9011 nngt0i 9012 nn2ge 9015 nn1gt1 9016 nnsub 9021 nngt0d 9026 nnrecl 9238 nn0ge0 9265 0mnnnnn0 9272 elnnnn0b 9284 elnnz 9327 elnn0z 9330 ztri3or0 9359 nnm1ge0 9403 gtndiv 9412 elpq 9714 elpqb 9715 nnrp 9729 nnledivrp 9832 fzo1fzo0n0 10250 ubmelfzo 10267 adddivflid 10361 flltdivnn0lt 10373 intfracq 10391 zmodcl 10415 zmodfz 10417 zmodid2 10423 m1modnnsub1 10441 expnnval 10613 nnlesq 10714 facdiv 10809 faclbnd 10812 bc0k 10827 dvdsval3 11934 nndivdvds 11939 moddvds 11942 evennn2n 12024 nnoddm1d2 12051 divalglemnn 12059 ndvdssub 12071 ndvdsadd 12072 modgcd 12128 sqgcd 12166 lcmgcdlem 12215 qredeu 12235 divdenle 12335 hashgcdlem 12376 oddprm 12397 pythagtriplem12 12413 pythagtriplem13 12414 pythagtriplem14 12415 pythagtriplem16 12417 pythagtriplem19 12420 pc2dvds 12468 fldivp1 12486 znnen 12555 exmidunben 12583 mulgnn 13196 mulgnegnn 13202 mulgmodid 13231 znf1o 14139 znidomb 14146 lgsval4a 15138 lgsne0 15154 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |