![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version |
Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
Ref | Expression |
---|---|
nngt0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8943 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnge1 8959 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 0lt1 8101 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 0re 7974 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 1re 7973 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | ltletr 8064 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | mp3an12 1337 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | mpani 430 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 2, 8 | sylc 62 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 ax-0lt1 7934 ax-0id 7936 ax-rnegex 7937 ax-pre-ltirr 7940 ax-pre-ltwlin 7941 ax-pre-lttrn 7942 ax-pre-ltadd 7944 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-br 4018 df-opab 4079 df-xp 4646 df-cnv 4648 df-iota 5192 df-fv 5238 df-ov 5893 df-pnf 8011 df-mnf 8012 df-xr 8013 df-ltxr 8014 df-le 8015 df-inn 8937 |
This theorem is referenced by: nnap0 8965 nngt0i 8966 nn2ge 8969 nn1gt1 8970 nnsub 8975 nngt0d 8980 nnrecl 9191 nn0ge0 9218 0mnnnnn0 9225 elnnnn0b 9237 elnnz 9280 elnn0z 9283 ztri3or0 9312 nnm1ge0 9356 gtndiv 9365 elpq 9665 elpqb 9666 nnrp 9680 nnledivrp 9783 fzo1fzo0n0 10200 ubmelfzo 10217 adddivflid 10309 flltdivnn0lt 10321 intfracq 10337 zmodcl 10361 zmodfz 10363 zmodid2 10369 m1modnnsub1 10387 expnnval 10540 nnlesq 10641 facdiv 10735 faclbnd 10738 bc0k 10753 dvdsval3 11815 nndivdvds 11820 moddvds 11823 evennn2n 11905 nnoddm1d2 11932 divalglemnn 11940 ndvdssub 11952 ndvdsadd 11953 modgcd 12009 sqgcd 12047 lcmgcdlem 12094 qredeu 12114 divdenle 12214 hashgcdlem 12255 oddprm 12276 pythagtriplem12 12292 pythagtriplem13 12293 pythagtriplem14 12294 pythagtriplem16 12296 pythagtriplem19 12299 pc2dvds 12346 fldivp1 12363 znnen 12416 exmidunben 12444 mulgnn 13033 mulgnegnn 13037 mulgmodid 13066 lgsval4a 14806 lgsne0 14822 |
Copyright terms: Public domain | W3C validator |