| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nngt0 | Unicode version | ||
| Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| Ref | Expression |
|---|---|
| nngt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9078 |
. 2
| |
| 2 | nnge1 9094 |
. 2
| |
| 3 | 0lt1 8234 |
. . 3
| |
| 4 | 0re 8107 |
. . . 4
| |
| 5 | 1re 8106 |
. . . 4
| |
| 6 | ltletr 8197 |
. . . 4
| |
| 7 | 4, 5, 6 | mp3an12 1340 |
. . 3
|
| 8 | 3, 7 | mpani 430 |
. 2
|
| 9 | 1, 2, 8 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-inn 9072 |
| This theorem is referenced by: nnap0 9100 nngt0i 9101 nn2ge 9104 nn1gt1 9105 nnsub 9110 nngt0d 9115 nnrecl 9328 nn0ge0 9355 0mnnnnn0 9362 elnnnn0b 9374 elnnz 9417 elnn0z 9420 ztri3or0 9449 nnnle0 9456 nnm1ge0 9494 gtndiv 9503 elpq 9805 elpqb 9806 nnrp 9820 nnledivrp 9923 fzo1fzo0n0 10344 ubmelfzo 10366 adddivflid 10472 flltdivnn0lt 10484 intfracq 10502 zmodcl 10526 zmodfz 10528 zmodid2 10534 m1modnnsub1 10552 expnnval 10724 nnlesq 10825 facdiv 10920 faclbnd 10923 bc0k 10938 ccatval21sw 11099 ccats1pfxeqrex 11206 dvdsval3 12217 nndivdvds 12222 moddvds 12225 evennn2n 12309 nnoddm1d2 12336 divalglemnn 12344 ndvdssub 12356 ndvdsadd 12357 modgcd 12427 sqgcd 12465 lcmgcdlem 12514 qredeu 12534 divdenle 12634 hashgcdlem 12675 oddprm 12697 pythagtriplem12 12713 pythagtriplem13 12714 pythagtriplem14 12715 pythagtriplem16 12717 pythagtriplem19 12720 pc2dvds 12768 fldivp1 12786 modsubi 12857 znnen 12884 exmidunben 12912 mulgnn 13577 mulgnegnn 13583 mulgmodid 13612 znf1o 14528 znidomb 14535 lgsval4a 15614 lgsne0 15630 gausslemma2dlem1a 15650 |
| Copyright terms: Public domain | W3C validator |