ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd Unicode version

Theorem expnbnd 10408
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 981 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  A  e.  RR )
21adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  A  e.  RR )
3 simp2 982 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  B  e.  RR )
43adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  B  e.  RR )
5 simpr 109 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  A )
6 simp3 983 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  <  B )
76adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  B )
8 1red 7774 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  e.  RR )
91, 8resubcld 8136 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( A  -  1 )  e.  RR )
103, 8resubcld 8136 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 )  e.  RR )
118, 3posdifd 8287 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  B  <->  0  <  ( B  -  1 ) ) )
126, 11mpbid 146 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <  ( B  -  1 ) )
1310, 12gt0ap0d 8384 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 ) #  0 )
149, 10, 13redivclapd 8587 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
( A  -  1 )  /  ( B  -  1 ) )  e.  RR )
15 arch 8967 . . . . . . 7  |-  ( ( ( A  -  1 )  /  ( B  -  1 ) )  e.  RR  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1614, 15syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
17163expa 1181 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  1  <  B
)  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1817adantrl 469 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
19 simplll 522 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  A  e.  RR )
2019adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  e.  RR )
21 simpllr 523 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  B  e.  RR )
22 1red 7774 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  e.  RR )
2321, 22resubcld 8136 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B  - 
1 )  e.  RR )
24 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN )
2524nnred 8726 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  RR )
2623, 25remulcld 7789 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( B  -  1 )  x.  k )  e.  RR )
2726, 22readdcld 7788 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( B  -  1 )  x.  k )  +  1 )  e.  RR )
2827adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  e.  RR )
2924nnnn0d 9023 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN0 )
30 reexpcl 10303 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
3121, 29, 30syl2anc 408 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
3231adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B ^ k )  e.  RR )
33 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k )
34 1red 7774 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  e.  RR )
3520, 34resubcld 8136 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  e.  RR )
36 simplr 519 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN )
3736nnred 8726 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  RR )
3821adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  B  e.  RR )
3938, 34resubcld 8136 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B  -  1 )  e.  RR )
40 simplrr 525 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  <  B
)
4140adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  <  B )
4234, 38posdifd 8287 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( 1  <  B  <->  0  <  ( B  -  1 ) ) )
4341, 42mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <  ( B  -  1 ) )
44 ltdivmul 8627 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  RR  /\  k  e.  RR  /\  (
( B  -  1 )  e.  RR  /\  0  <  ( B  - 
1 ) ) )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  <->  ( A  - 
1 )  <  (
( B  -  1 )  x.  k ) ) )
4535, 37, 39, 43, 44syl112anc 1220 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( A  -  1 )  /  ( B  -  1 ) )  <  k  <->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) ) )
4633, 45mpbid 146 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) )
4739, 37remulcld 7789 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( B  -  1 )  x.  k )  e.  RR )
4820, 34, 47ltsubaddd 8296 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  <  ( ( B  -  1 )  x.  k )  <->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) ) )
4946, 48mpbid 146 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) )
5036nnnn0d 9023 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN0 )
51 0red 7760 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  e.  RR )
52 0lt1 7882 . . . . . . . . . . . 12  |-  0  <  1
53 0re 7759 . . . . . . . . . . . . 13  |-  0  e.  RR
54 1re 7758 . . . . . . . . . . . . 13  |-  1  e.  RR
55 lttr 7831 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5653, 54, 55mp3an12 1305 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5752, 56mpani 426 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
5821, 40, 57sylc 62 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <  B
)
5951, 21, 58ltled 7874 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <_  B
)
6059adantr 274 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <_  B )
61 bernneq2 10406 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0  /\  0  <_  B )  ->  (
( ( B  - 
1 )  x.  k
)  +  1 )  <_  ( B ^
k ) )
6238, 50, 60, 61syl3anc 1216 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  <_ 
( B ^ k
) )
6320, 28, 32, 49, 62ltletrd 8178 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( B ^ k ) )
6463ex 114 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  ->  A  <  ( B ^ k ) ) )
6564reximdva 2532 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  ( E. k  e.  NN  ( ( A  - 
1 )  /  ( B  -  1 ) )  <  k  ->  E. k  e.  NN  A  <  ( B ^
k ) ) )
6618, 65mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
672, 4, 5, 7, 66syl22anc 1217 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
68 1nn 8724 . . 3  |-  1  e.  NN
69 simpr 109 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  B )
70 simpl2 985 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  RR )
7170recnd 7787 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  CC )
72 exp1 10292 . . . . 5  |-  ( B  e.  CC  ->  ( B ^ 1 )  =  B )
7371, 72syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  -> 
( B ^ 1 )  =  B )
7469, 73breqtrrd 3951 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  ( B ^
1 ) )
75 oveq2 5775 . . . . 5  |-  ( k  =  1  ->  ( B ^ k )  =  ( B ^ 1 ) )
7675breq2d 3936 . . . 4  |-  ( k  =  1  ->  ( A  <  ( B ^
k )  <->  A  <  ( B ^ 1 ) ) )
7776rspcev 2784 . . 3  |-  ( ( 1  e.  NN  /\  A  <  ( B ^
1 ) )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
7868, 74, 77sylancr 410 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
79 axltwlin 7825 . . . . 5  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8054, 79mp3an1 1302 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8180ancoms 266 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
82813impia 1178 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  A  \/  A  <  B ) )
8367, 78, 82mpjaodan 787 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   CCcc 7611   RRcr 7612   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618    < clt 7793    <_ cle 7794    - cmin 7926    / cdiv 8425   NNcn 8713   NN0cn0 8970   ^cexp 10285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212  df-exp 10286
This theorem is referenced by:  expnlbnd  10409
  Copyright terms: Public domain W3C validator