Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expnbnd | Unicode version |
Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.) |
Ref | Expression |
---|---|
expnbnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . . 4 | |
2 | 1 | adantr 274 | . . 3 |
3 | simp2 993 | . . . 4 | |
4 | 3 | adantr 274 | . . 3 |
5 | simpr 109 | . . 3 | |
6 | simp3 994 | . . . 4 | |
7 | 6 | adantr 274 | . . 3 |
8 | 1red 7935 | . . . . . . . . 9 | |
9 | 1, 8 | resubcld 8300 | . . . . . . . 8 |
10 | 3, 8 | resubcld 8300 | . . . . . . . 8 |
11 | 8, 3 | posdifd 8451 | . . . . . . . . . 10 |
12 | 6, 11 | mpbid 146 | . . . . . . . . 9 |
13 | 10, 12 | gt0ap0d 8548 | . . . . . . . 8 # |
14 | 9, 10, 13 | redivclapd 8752 | . . . . . . 7 |
15 | arch 9132 | . . . . . . 7 | |
16 | 14, 15 | syl 14 | . . . . . 6 |
17 | 16 | 3expa 1198 | . . . . 5 |
18 | 17 | adantrl 475 | . . . 4 |
19 | simplll 528 | . . . . . . . 8 | |
20 | 19 | adantr 274 | . . . . . . 7 |
21 | simpllr 529 | . . . . . . . . . . 11 | |
22 | 1red 7935 | . . . . . . . . . . 11 | |
23 | 21, 22 | resubcld 8300 | . . . . . . . . . 10 |
24 | simpr 109 | . . . . . . . . . . 11 | |
25 | 24 | nnred 8891 | . . . . . . . . . 10 |
26 | 23, 25 | remulcld 7950 | . . . . . . . . 9 |
27 | 26, 22 | readdcld 7949 | . . . . . . . 8 |
28 | 27 | adantr 274 | . . . . . . 7 |
29 | 24 | nnnn0d 9188 | . . . . . . . . 9 |
30 | reexpcl 10493 | . . . . . . . . 9 | |
31 | 21, 29, 30 | syl2anc 409 | . . . . . . . 8 |
32 | 31 | adantr 274 | . . . . . . 7 |
33 | simpr 109 | . . . . . . . . 9 | |
34 | 1red 7935 | . . . . . . . . . . 11 | |
35 | 20, 34 | resubcld 8300 | . . . . . . . . . 10 |
36 | simplr 525 | . . . . . . . . . . 11 | |
37 | 36 | nnred 8891 | . . . . . . . . . 10 |
38 | 21 | adantr 274 | . . . . . . . . . . 11 |
39 | 38, 34 | resubcld 8300 | . . . . . . . . . 10 |
40 | simplrr 531 | . . . . . . . . . . . 12 | |
41 | 40 | adantr 274 | . . . . . . . . . . 11 |
42 | 34, 38 | posdifd 8451 | . . . . . . . . . . 11 |
43 | 41, 42 | mpbid 146 | . . . . . . . . . 10 |
44 | ltdivmul 8792 | . . . . . . . . . 10 | |
45 | 35, 37, 39, 43, 44 | syl112anc 1237 | . . . . . . . . 9 |
46 | 33, 45 | mpbid 146 | . . . . . . . 8 |
47 | 39, 37 | remulcld 7950 | . . . . . . . . 9 |
48 | 20, 34, 47 | ltsubaddd 8460 | . . . . . . . 8 |
49 | 46, 48 | mpbid 146 | . . . . . . 7 |
50 | 36 | nnnn0d 9188 | . . . . . . . 8 |
51 | 0red 7921 | . . . . . . . . . 10 | |
52 | 0lt1 8046 | . . . . . . . . . . . 12 | |
53 | 0re 7920 | . . . . . . . . . . . . 13 | |
54 | 1re 7919 | . . . . . . . . . . . . 13 | |
55 | lttr 7993 | . . . . . . . . . . . . 13 | |
56 | 53, 54, 55 | mp3an12 1322 | . . . . . . . . . . . 12 |
57 | 52, 56 | mpani 428 | . . . . . . . . . . 11 |
58 | 21, 40, 57 | sylc 62 | . . . . . . . . . 10 |
59 | 51, 21, 58 | ltled 8038 | . . . . . . . . 9 |
60 | 59 | adantr 274 | . . . . . . . 8 |
61 | bernneq2 10597 | . . . . . . . 8 | |
62 | 38, 50, 60, 61 | syl3anc 1233 | . . . . . . 7 |
63 | 20, 28, 32, 49, 62 | ltletrd 8342 | . . . . . 6 |
64 | 63 | ex 114 | . . . . 5 |
65 | 64 | reximdva 2572 | . . . 4 |
66 | 18, 65 | mpd 13 | . . 3 |
67 | 2, 4, 5, 7, 66 | syl22anc 1234 | . 2 |
68 | 1nn 8889 | . . 3 | |
69 | simpr 109 | . . . 4 | |
70 | simpl2 996 | . . . . . 6 | |
71 | 70 | recnd 7948 | . . . . 5 |
72 | exp1 10482 | . . . . 5 | |
73 | 71, 72 | syl 14 | . . . 4 |
74 | 69, 73 | breqtrrd 4017 | . . 3 |
75 | oveq2 5861 | . . . . 5 | |
76 | 75 | breq2d 4001 | . . . 4 |
77 | 76 | rspcev 2834 | . . 3 |
78 | 68, 74, 77 | sylancr 412 | . 2 |
79 | axltwlin 7987 | . . . . 5 | |
80 | 54, 79 | mp3an1 1319 | . . . 4 |
81 | 80 | ancoms 266 | . . 3 |
82 | 81 | 3impia 1195 | . 2 |
83 | 67, 78, 82 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3989 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 caddc 7777 cmul 7779 clt 7954 cle 7955 cmin 8090 cdiv 8589 cn 8878 cn0 9135 cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: expnlbnd 10600 pclemub 12241 |
Copyright terms: Public domain | W3C validator |