ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd Unicode version

Theorem expnbnd 10574
Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 987 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  A  e.  RR )
21adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  A  e.  RR )
3 simp2 988 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  B  e.  RR )
43adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  B  e.  RR )
5 simpr 109 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  A )
6 simp3 989 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  <  B )
76adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  B )
8 1red 7910 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  e.  RR )
91, 8resubcld 8275 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( A  -  1 )  e.  RR )
103, 8resubcld 8275 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 )  e.  RR )
118, 3posdifd 8426 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  B  <->  0  <  ( B  -  1 ) ) )
126, 11mpbid 146 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <  ( B  -  1 ) )
1310, 12gt0ap0d 8523 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 ) #  0 )
149, 10, 13redivclapd 8727 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
( A  -  1 )  /  ( B  -  1 ) )  e.  RR )
15 arch 9107 . . . . . . 7  |-  ( ( ( A  -  1 )  /  ( B  -  1 ) )  e.  RR  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1614, 15syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
17163expa 1193 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  1  <  B
)  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1817adantrl 470 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
19 simplll 523 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  A  e.  RR )
2019adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  e.  RR )
21 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  B  e.  RR )
22 1red 7910 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  e.  RR )
2321, 22resubcld 8275 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B  - 
1 )  e.  RR )
24 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN )
2524nnred 8866 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  RR )
2623, 25remulcld 7925 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( B  -  1 )  x.  k )  e.  RR )
2726, 22readdcld 7924 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( B  -  1 )  x.  k )  +  1 )  e.  RR )
2827adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  e.  RR )
2924nnnn0d 9163 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN0 )
30 reexpcl 10468 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
3121, 29, 30syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
3231adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B ^ k )  e.  RR )
33 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k )
34 1red 7910 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  e.  RR )
3520, 34resubcld 8275 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  e.  RR )
36 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN )
3736nnred 8866 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  RR )
3821adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  B  e.  RR )
3938, 34resubcld 8275 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B  -  1 )  e.  RR )
40 simplrr 526 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  <  B
)
4140adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  <  B )
4234, 38posdifd 8426 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( 1  <  B  <->  0  <  ( B  -  1 ) ) )
4341, 42mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <  ( B  -  1 ) )
44 ltdivmul 8767 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  RR  /\  k  e.  RR  /\  (
( B  -  1 )  e.  RR  /\  0  <  ( B  - 
1 ) ) )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  <->  ( A  - 
1 )  <  (
( B  -  1 )  x.  k ) ) )
4535, 37, 39, 43, 44syl112anc 1232 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( A  -  1 )  /  ( B  -  1 ) )  <  k  <->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) ) )
4633, 45mpbid 146 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) )
4739, 37remulcld 7925 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( B  -  1 )  x.  k )  e.  RR )
4820, 34, 47ltsubaddd 8435 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  <  ( ( B  -  1 )  x.  k )  <->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) ) )
4946, 48mpbid 146 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) )
5036nnnn0d 9163 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN0 )
51 0red 7896 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  e.  RR )
52 0lt1 8021 . . . . . . . . . . . 12  |-  0  <  1
53 0re 7895 . . . . . . . . . . . . 13  |-  0  e.  RR
54 1re 7894 . . . . . . . . . . . . 13  |-  1  e.  RR
55 lttr 7968 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5653, 54, 55mp3an12 1317 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5752, 56mpani 427 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
5821, 40, 57sylc 62 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <  B
)
5951, 21, 58ltled 8013 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <_  B
)
6059adantr 274 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <_  B )
61 bernneq2 10572 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0  /\  0  <_  B )  ->  (
( ( B  - 
1 )  x.  k
)  +  1 )  <_  ( B ^
k ) )
6238, 50, 60, 61syl3anc 1228 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  <_ 
( B ^ k
) )
6320, 28, 32, 49, 62ltletrd 8317 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( B ^ k ) )
6463ex 114 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  ->  A  <  ( B ^ k ) ) )
6564reximdva 2567 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  ( E. k  e.  NN  ( ( A  - 
1 )  /  ( B  -  1 ) )  <  k  ->  E. k  e.  NN  A  <  ( B ^
k ) ) )
6618, 65mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
672, 4, 5, 7, 66syl22anc 1229 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
68 1nn 8864 . . 3  |-  1  e.  NN
69 simpr 109 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  B )
70 simpl2 991 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  RR )
7170recnd 7923 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  CC )
72 exp1 10457 . . . . 5  |-  ( B  e.  CC  ->  ( B ^ 1 )  =  B )
7371, 72syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  -> 
( B ^ 1 )  =  B )
7469, 73breqtrrd 4009 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  ( B ^
1 ) )
75 oveq2 5849 . . . . 5  |-  ( k  =  1  ->  ( B ^ k )  =  ( B ^ 1 ) )
7675breq2d 3993 . . . 4  |-  ( k  =  1  ->  ( A  <  ( B ^
k )  <->  A  <  ( B ^ 1 ) ) )
7776rspcev 2829 . . 3  |-  ( ( 1  e.  NN  /\  A  <  ( B ^
1 ) )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
7868, 74, 77sylancr 411 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
79 axltwlin 7962 . . . . 5  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8054, 79mp3an1 1314 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8180ancoms 266 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
82813impia 1190 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  A  \/  A  <  B ) )
8367, 78, 82mpjaodan 788 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2444   class class class wbr 3981  (class class class)co 5841   CCcc 7747   RRcr 7748   0cc0 7749   1c1 7750    + caddc 7752    x. cmul 7754    < clt 7929    <_ cle 7930    - cmin 8065    / cdiv 8564   NNcn 8853   NN0cn0 9110   ^cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  expnlbnd  10575  pclemub  12215
  Copyright terms: Public domain W3C validator