| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expnbnd | Unicode version | ||
| Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.) |
| Ref | Expression |
|---|---|
| expnbnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | simp2 1022 |
. . . 4
| |
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | simpr 110 |
. . 3
| |
| 6 | simp3 1023 |
. . . 4
| |
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | 1red 8157 |
. . . . . . . . 9
| |
| 9 | 1, 8 | resubcld 8523 |
. . . . . . . 8
|
| 10 | 3, 8 | resubcld 8523 |
. . . . . . . 8
|
| 11 | 8, 3 | posdifd 8675 |
. . . . . . . . . 10
|
| 12 | 6, 11 | mpbid 147 |
. . . . . . . . 9
|
| 13 | 10, 12 | gt0ap0d 8772 |
. . . . . . . 8
|
| 14 | 9, 10, 13 | redivclapd 8978 |
. . . . . . 7
|
| 15 | arch 9362 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 16 | 3expa 1227 |
. . . . 5
|
| 18 | 17 | adantrl 478 |
. . . 4
|
| 19 | simplll 533 |
. . . . . . . 8
| |
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | simpllr 534 |
. . . . . . . . . . 11
| |
| 22 | 1red 8157 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | resubcld 8523 |
. . . . . . . . . 10
|
| 24 | simpr 110 |
. . . . . . . . . . 11
| |
| 25 | 24 | nnred 9119 |
. . . . . . . . . 10
|
| 26 | 23, 25 | remulcld 8173 |
. . . . . . . . 9
|
| 27 | 26, 22 | readdcld 8172 |
. . . . . . . 8
|
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 24 | nnnn0d 9418 |
. . . . . . . . 9
|
| 30 | reexpcl 10773 |
. . . . . . . . 9
| |
| 31 | 21, 29, 30 | syl2anc 411 |
. . . . . . . 8
|
| 32 | 31 | adantr 276 |
. . . . . . 7
|
| 33 | simpr 110 |
. . . . . . . . 9
| |
| 34 | 1red 8157 |
. . . . . . . . . . 11
| |
| 35 | 20, 34 | resubcld 8523 |
. . . . . . . . . 10
|
| 36 | simplr 528 |
. . . . . . . . . . 11
| |
| 37 | 36 | nnred 9119 |
. . . . . . . . . 10
|
| 38 | 21 | adantr 276 |
. . . . . . . . . . 11
|
| 39 | 38, 34 | resubcld 8523 |
. . . . . . . . . 10
|
| 40 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 41 | 40 | adantr 276 |
. . . . . . . . . . 11
|
| 42 | 34, 38 | posdifd 8675 |
. . . . . . . . . . 11
|
| 43 | 41, 42 | mpbid 147 |
. . . . . . . . . 10
|
| 44 | ltdivmul 9019 |
. . . . . . . . . 10
| |
| 45 | 35, 37, 39, 43, 44 | syl112anc 1275 |
. . . . . . . . 9
|
| 46 | 33, 45 | mpbid 147 |
. . . . . . . 8
|
| 47 | 39, 37 | remulcld 8173 |
. . . . . . . . 9
|
| 48 | 20, 34, 47 | ltsubaddd 8684 |
. . . . . . . 8
|
| 49 | 46, 48 | mpbid 147 |
. . . . . . 7
|
| 50 | 36 | nnnn0d 9418 |
. . . . . . . 8
|
| 51 | 0red 8143 |
. . . . . . . . . 10
| |
| 52 | 0lt1 8269 |
. . . . . . . . . . . 12
| |
| 53 | 0re 8142 |
. . . . . . . . . . . . 13
| |
| 54 | 1re 8141 |
. . . . . . . . . . . . 13
| |
| 55 | lttr 8216 |
. . . . . . . . . . . . 13
| |
| 56 | 53, 54, 55 | mp3an12 1361 |
. . . . . . . . . . . 12
|
| 57 | 52, 56 | mpani 430 |
. . . . . . . . . . 11
|
| 58 | 21, 40, 57 | sylc 62 |
. . . . . . . . . 10
|
| 59 | 51, 21, 58 | ltled 8261 |
. . . . . . . . 9
|
| 60 | 59 | adantr 276 |
. . . . . . . 8
|
| 61 | bernneq2 10878 |
. . . . . . . 8
| |
| 62 | 38, 50, 60, 61 | syl3anc 1271 |
. . . . . . 7
|
| 63 | 20, 28, 32, 49, 62 | ltletrd 8566 |
. . . . . 6
|
| 64 | 63 | ex 115 |
. . . . 5
|
| 65 | 64 | reximdva 2632 |
. . . 4
|
| 66 | 18, 65 | mpd 13 |
. . 3
|
| 67 | 2, 4, 5, 7, 66 | syl22anc 1272 |
. 2
|
| 68 | 1nn 9117 |
. . 3
| |
| 69 | simpr 110 |
. . . 4
| |
| 70 | simpl2 1025 |
. . . . . 6
| |
| 71 | 70 | recnd 8171 |
. . . . 5
|
| 72 | exp1 10762 |
. . . . 5
| |
| 73 | 71, 72 | syl 14 |
. . . 4
|
| 74 | 69, 73 | breqtrrd 4110 |
. . 3
|
| 75 | oveq2 6008 |
. . . . 5
| |
| 76 | 75 | breq2d 4094 |
. . . 4
|
| 77 | 76 | rspcev 2907 |
. . 3
|
| 78 | 68, 74, 77 | sylancr 414 |
. 2
|
| 79 | axltwlin 8210 |
. . . . 5
| |
| 80 | 54, 79 | mp3an1 1358 |
. . . 4
|
| 81 | 80 | ancoms 268 |
. . 3
|
| 82 | 81 | 3impia 1224 |
. 2
|
| 83 | 67, 78, 82 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-exp 10756 |
| This theorem is referenced by: expnlbnd 10881 bitsfzolem 12460 bitsfi 12463 pclemub 12805 |
| Copyright terms: Public domain | W3C validator |