| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expnbnd | Unicode version | ||
| Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.) |
| Ref | Expression |
|---|---|
| expnbnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | simp2 1000 |
. . . 4
| |
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | simpr 110 |
. . 3
| |
| 6 | simp3 1001 |
. . . 4
| |
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | 1red 8041 |
. . . . . . . . 9
| |
| 9 | 1, 8 | resubcld 8407 |
. . . . . . . 8
|
| 10 | 3, 8 | resubcld 8407 |
. . . . . . . 8
|
| 11 | 8, 3 | posdifd 8559 |
. . . . . . . . . 10
|
| 12 | 6, 11 | mpbid 147 |
. . . . . . . . 9
|
| 13 | 10, 12 | gt0ap0d 8656 |
. . . . . . . 8
|
| 14 | 9, 10, 13 | redivclapd 8862 |
. . . . . . 7
|
| 15 | arch 9246 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 16 | 3expa 1205 |
. . . . 5
|
| 18 | 17 | adantrl 478 |
. . . 4
|
| 19 | simplll 533 |
. . . . . . . 8
| |
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | simpllr 534 |
. . . . . . . . . . 11
| |
| 22 | 1red 8041 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | resubcld 8407 |
. . . . . . . . . 10
|
| 24 | simpr 110 |
. . . . . . . . . . 11
| |
| 25 | 24 | nnred 9003 |
. . . . . . . . . 10
|
| 26 | 23, 25 | remulcld 8057 |
. . . . . . . . 9
|
| 27 | 26, 22 | readdcld 8056 |
. . . . . . . 8
|
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 24 | nnnn0d 9302 |
. . . . . . . . 9
|
| 30 | reexpcl 10648 |
. . . . . . . . 9
| |
| 31 | 21, 29, 30 | syl2anc 411 |
. . . . . . . 8
|
| 32 | 31 | adantr 276 |
. . . . . . 7
|
| 33 | simpr 110 |
. . . . . . . . 9
| |
| 34 | 1red 8041 |
. . . . . . . . . . 11
| |
| 35 | 20, 34 | resubcld 8407 |
. . . . . . . . . 10
|
| 36 | simplr 528 |
. . . . . . . . . . 11
| |
| 37 | 36 | nnred 9003 |
. . . . . . . . . 10
|
| 38 | 21 | adantr 276 |
. . . . . . . . . . 11
|
| 39 | 38, 34 | resubcld 8407 |
. . . . . . . . . 10
|
| 40 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 41 | 40 | adantr 276 |
. . . . . . . . . . 11
|
| 42 | 34, 38 | posdifd 8559 |
. . . . . . . . . . 11
|
| 43 | 41, 42 | mpbid 147 |
. . . . . . . . . 10
|
| 44 | ltdivmul 8903 |
. . . . . . . . . 10
| |
| 45 | 35, 37, 39, 43, 44 | syl112anc 1253 |
. . . . . . . . 9
|
| 46 | 33, 45 | mpbid 147 |
. . . . . . . 8
|
| 47 | 39, 37 | remulcld 8057 |
. . . . . . . . 9
|
| 48 | 20, 34, 47 | ltsubaddd 8568 |
. . . . . . . 8
|
| 49 | 46, 48 | mpbid 147 |
. . . . . . 7
|
| 50 | 36 | nnnn0d 9302 |
. . . . . . . 8
|
| 51 | 0red 8027 |
. . . . . . . . . 10
| |
| 52 | 0lt1 8153 |
. . . . . . . . . . . 12
| |
| 53 | 0re 8026 |
. . . . . . . . . . . . 13
| |
| 54 | 1re 8025 |
. . . . . . . . . . . . 13
| |
| 55 | lttr 8100 |
. . . . . . . . . . . . 13
| |
| 56 | 53, 54, 55 | mp3an12 1338 |
. . . . . . . . . . . 12
|
| 57 | 52, 56 | mpani 430 |
. . . . . . . . . . 11
|
| 58 | 21, 40, 57 | sylc 62 |
. . . . . . . . . 10
|
| 59 | 51, 21, 58 | ltled 8145 |
. . . . . . . . 9
|
| 60 | 59 | adantr 276 |
. . . . . . . 8
|
| 61 | bernneq2 10753 |
. . . . . . . 8
| |
| 62 | 38, 50, 60, 61 | syl3anc 1249 |
. . . . . . 7
|
| 63 | 20, 28, 32, 49, 62 | ltletrd 8450 |
. . . . . 6
|
| 64 | 63 | ex 115 |
. . . . 5
|
| 65 | 64 | reximdva 2599 |
. . . 4
|
| 66 | 18, 65 | mpd 13 |
. . 3
|
| 67 | 2, 4, 5, 7, 66 | syl22anc 1250 |
. 2
|
| 68 | 1nn 9001 |
. . 3
| |
| 69 | simpr 110 |
. . . 4
| |
| 70 | simpl2 1003 |
. . . . . 6
| |
| 71 | 70 | recnd 8055 |
. . . . 5
|
| 72 | exp1 10637 |
. . . . 5
| |
| 73 | 71, 72 | syl 14 |
. . . 4
|
| 74 | 69, 73 | breqtrrd 4061 |
. . 3
|
| 75 | oveq2 5930 |
. . . . 5
| |
| 76 | 75 | breq2d 4045 |
. . . 4
|
| 77 | 76 | rspcev 2868 |
. . 3
|
| 78 | 68, 74, 77 | sylancr 414 |
. 2
|
| 79 | axltwlin 8094 |
. . . . 5
| |
| 80 | 54, 79 | mp3an1 1335 |
. . . 4
|
| 81 | 80 | ancoms 268 |
. . 3
|
| 82 | 81 | 3impia 1202 |
. 2
|
| 83 | 67, 78, 82 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 df-exp 10631 |
| This theorem is referenced by: expnlbnd 10756 bitsfzolem 12118 pclemub 12456 |
| Copyright terms: Public domain | W3C validator |