ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd Unicode version

Theorem expnbnd 10880
Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 1021 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  A  e.  RR )
21adantr 276 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  A  e.  RR )
3 simp2 1022 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  B  e.  RR )
43adantr 276 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  B  e.  RR )
5 simpr 110 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  A )
6 simp3 1023 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  <  B )
76adantr 276 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  B )
8 1red 8157 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  e.  RR )
91, 8resubcld 8523 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( A  -  1 )  e.  RR )
103, 8resubcld 8523 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 )  e.  RR )
118, 3posdifd 8675 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  B  <->  0  <  ( B  -  1 ) ) )
126, 11mpbid 147 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <  ( B  -  1 ) )
1310, 12gt0ap0d 8772 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 ) #  0 )
149, 10, 13redivclapd 8978 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
( A  -  1 )  /  ( B  -  1 ) )  e.  RR )
15 arch 9362 . . . . . . 7  |-  ( ( ( A  -  1 )  /  ( B  -  1 ) )  e.  RR  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1614, 15syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
17163expa 1227 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  1  <  B
)  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1817adantrl 478 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
19 simplll 533 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  A  e.  RR )
2019adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  e.  RR )
21 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  B  e.  RR )
22 1red 8157 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  e.  RR )
2321, 22resubcld 8523 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B  - 
1 )  e.  RR )
24 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN )
2524nnred 9119 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  RR )
2623, 25remulcld 8173 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( B  -  1 )  x.  k )  e.  RR )
2726, 22readdcld 8172 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( B  -  1 )  x.  k )  +  1 )  e.  RR )
2827adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  e.  RR )
2924nnnn0d 9418 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN0 )
30 reexpcl 10773 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
3121, 29, 30syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
3231adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B ^ k )  e.  RR )
33 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k )
34 1red 8157 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  e.  RR )
3520, 34resubcld 8523 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  e.  RR )
36 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN )
3736nnred 9119 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  RR )
3821adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  B  e.  RR )
3938, 34resubcld 8523 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B  -  1 )  e.  RR )
40 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  <  B
)
4140adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  <  B )
4234, 38posdifd 8675 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( 1  <  B  <->  0  <  ( B  -  1 ) ) )
4341, 42mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <  ( B  -  1 ) )
44 ltdivmul 9019 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  RR  /\  k  e.  RR  /\  (
( B  -  1 )  e.  RR  /\  0  <  ( B  - 
1 ) ) )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  <->  ( A  - 
1 )  <  (
( B  -  1 )  x.  k ) ) )
4535, 37, 39, 43, 44syl112anc 1275 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( A  -  1 )  /  ( B  -  1 ) )  <  k  <->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) ) )
4633, 45mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) )
4739, 37remulcld 8173 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( B  -  1 )  x.  k )  e.  RR )
4820, 34, 47ltsubaddd 8684 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  <  ( ( B  -  1 )  x.  k )  <->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) ) )
4946, 48mpbid 147 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) )
5036nnnn0d 9418 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN0 )
51 0red 8143 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  e.  RR )
52 0lt1 8269 . . . . . . . . . . . 12  |-  0  <  1
53 0re 8142 . . . . . . . . . . . . 13  |-  0  e.  RR
54 1re 8141 . . . . . . . . . . . . 13  |-  1  e.  RR
55 lttr 8216 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5653, 54, 55mp3an12 1361 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5752, 56mpani 430 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
5821, 40, 57sylc 62 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <  B
)
5951, 21, 58ltled 8261 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <_  B
)
6059adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <_  B )
61 bernneq2 10878 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0  /\  0  <_  B )  ->  (
( ( B  - 
1 )  x.  k
)  +  1 )  <_  ( B ^
k ) )
6238, 50, 60, 61syl3anc 1271 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  <_ 
( B ^ k
) )
6320, 28, 32, 49, 62ltletrd 8566 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( B ^ k ) )
6463ex 115 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  ->  A  <  ( B ^ k ) ) )
6564reximdva 2632 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  ( E. k  e.  NN  ( ( A  - 
1 )  /  ( B  -  1 ) )  <  k  ->  E. k  e.  NN  A  <  ( B ^
k ) ) )
6618, 65mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
672, 4, 5, 7, 66syl22anc 1272 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
68 1nn 9117 . . 3  |-  1  e.  NN
69 simpr 110 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  B )
70 simpl2 1025 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  RR )
7170recnd 8171 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  CC )
72 exp1 10762 . . . . 5  |-  ( B  e.  CC  ->  ( B ^ 1 )  =  B )
7371, 72syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  -> 
( B ^ 1 )  =  B )
7469, 73breqtrrd 4110 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  ( B ^
1 ) )
75 oveq2 6008 . . . . 5  |-  ( k  =  1  ->  ( B ^ k )  =  ( B ^ 1 ) )
7675breq2d 4094 . . . 4  |-  ( k  =  1  ->  ( A  <  ( B ^
k )  <->  A  <  ( B ^ 1 ) ) )
7776rspcev 2907 . . 3  |-  ( ( 1  e.  NN  /\  A  <  ( B ^
1 ) )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
7868, 74, 77sylancr 414 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
79 axltwlin 8210 . . . . 5  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8054, 79mp3an1 1358 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8180ancoms 268 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
82813impia 1224 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  A  \/  A  <  B ) )
8367, 78, 82mpjaodan 803 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    < clt 8177    <_ cle 8178    - cmin 8313    / cdiv 8815   NNcn 9106   NN0cn0 9365   ^cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  expnlbnd  10881  bitsfzolem  12460  bitsfi  12463  pclemub  12805
  Copyright terms: Public domain W3C validator