ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnbnd Unicode version

Theorem expnbnd 10599
Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem expnbnd
StepHypRef Expression
1 simp1 992 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  A  e.  RR )
21adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  A  e.  RR )
3 simp2 993 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  B  e.  RR )
43adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  B  e.  RR )
5 simpr 109 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  A )
6 simp3 994 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  <  B )
76adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  -> 
1  <  B )
8 1red 7935 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  e.  RR )
91, 8resubcld 8300 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( A  -  1 )  e.  RR )
103, 8resubcld 8300 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 )  e.  RR )
118, 3posdifd 8451 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  B  <->  0  <  ( B  -  1 ) ) )
126, 11mpbid 146 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <  ( B  -  1 ) )
1310, 12gt0ap0d 8548 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  -  1 ) #  0 )
149, 10, 13redivclapd 8752 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
( A  -  1 )  /  ( B  -  1 ) )  e.  RR )
15 arch 9132 . . . . . . 7  |-  ( ( ( A  -  1 )  /  ( B  -  1 ) )  e.  RR  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1614, 15syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
17163expa 1198 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  1  <  B
)  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
1817adantrl 475 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)
19 simplll 528 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  A  e.  RR )
2019adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  e.  RR )
21 simpllr 529 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  B  e.  RR )
22 1red 7935 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  e.  RR )
2321, 22resubcld 8300 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B  - 
1 )  e.  RR )
24 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN )
2524nnred 8891 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  RR )
2623, 25remulcld 7950 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( B  -  1 )  x.  k )  e.  RR )
2726, 22readdcld 7949 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( B  -  1 )  x.  k )  +  1 )  e.  RR )
2827adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  e.  RR )
2924nnnn0d 9188 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  k  e.  NN0 )
30 reexpcl 10493 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
3121, 29, 30syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( B ^
k )  e.  RR )
3231adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B ^ k )  e.  RR )
33 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k )
34 1red 7935 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  e.  RR )
3520, 34resubcld 8300 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  e.  RR )
36 simplr 525 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN )
3736nnred 8891 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  RR )
3821adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  B  e.  RR )
3938, 34resubcld 8300 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( B  -  1 )  e.  RR )
40 simplrr 531 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  1  <  B
)
4140adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  1  <  B )
4234, 38posdifd 8451 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( 1  <  B  <->  0  <  ( B  -  1 ) ) )
4341, 42mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <  ( B  -  1 ) )
44 ltdivmul 8792 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  RR  /\  k  e.  RR  /\  (
( B  -  1 )  e.  RR  /\  0  <  ( B  - 
1 ) ) )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  <->  ( A  - 
1 )  <  (
( B  -  1 )  x.  k ) ) )
4535, 37, 39, 43, 44syl112anc 1237 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( A  -  1 )  /  ( B  -  1 ) )  <  k  <->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) ) )
4633, 45mpbid 146 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( A  -  1 )  < 
( ( B  - 
1 )  x.  k
) )
4739, 37remulcld 7950 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( B  -  1 )  x.  k )  e.  RR )
4820, 34, 47ltsubaddd 8460 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( ( A  -  1 )  <  ( ( B  -  1 )  x.  k )  <->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) ) )
4946, 48mpbid 146 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( ( ( B  - 
1 )  x.  k
)  +  1 ) )
5036nnnn0d 9188 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  k  e.  NN0 )
51 0red 7921 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  e.  RR )
52 0lt1 8046 . . . . . . . . . . . 12  |-  0  <  1
53 0re 7920 . . . . . . . . . . . . 13  |-  0  e.  RR
54 1re 7919 . . . . . . . . . . . . 13  |-  1  e.  RR
55 lttr 7993 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  B  e.  RR )  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5653, 54, 55mp3an12 1322 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  (
( 0  <  1  /\  1  <  B )  ->  0  <  B
) )
5752, 56mpani 428 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
1  <  B  ->  0  <  B ) )
5821, 40, 57sylc 62 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <  B
)
5951, 21, 58ltled 8038 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  0  <_  B
)
6059adantr 274 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  0  <_  B )
61 bernneq2 10597 . . . . . . . 8  |-  ( ( B  e.  RR  /\  k  e.  NN0  /\  0  <_  B )  ->  (
( ( B  - 
1 )  x.  k
)  +  1 )  <_  ( B ^
k ) )
6238, 50, 60, 61syl3anc 1233 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  ( (
( B  -  1 )  x.  k )  +  1 )  <_ 
( B ^ k
) )
6320, 28, 32, 49, 62ltletrd 8342 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  /\  ( ( A  -  1 )  / 
( B  -  1 ) )  <  k
)  ->  A  <  ( B ^ k ) )
6463ex 114 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
1  <  A  /\  1  <  B ) )  /\  k  e.  NN )  ->  ( ( ( A  -  1 )  /  ( B  - 
1 ) )  < 
k  ->  A  <  ( B ^ k ) ) )
6564reximdva 2572 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  ( E. k  e.  NN  ( ( A  - 
1 )  /  ( B  -  1 ) )  <  k  ->  E. k  e.  NN  A  <  ( B ^
k ) ) )
6618, 65mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
672, 4, 5, 7, 66syl22anc 1234 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  1  <  A )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
68 1nn 8889 . . 3  |-  1  e.  NN
69 simpr 109 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  B )
70 simpl2 996 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  RR )
7170recnd 7948 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  B  e.  CC )
72 exp1 10482 . . . . 5  |-  ( B  e.  CC  ->  ( B ^ 1 )  =  B )
7371, 72syl 14 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  -> 
( B ^ 1 )  =  B )
7469, 73breqtrrd 4017 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  A  <  ( B ^
1 ) )
75 oveq2 5861 . . . . 5  |-  ( k  =  1  ->  ( B ^ k )  =  ( B ^ 1 ) )
7675breq2d 4001 . . . 4  |-  ( k  =  1  ->  ( A  <  ( B ^
k )  <->  A  <  ( B ^ 1 ) ) )
7776rspcev 2834 . . 3  |-  ( ( 1  e.  NN  /\  A  <  ( B ^
1 ) )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
7868, 74, 77sylancr 412 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  A  <  B )  ->  E. k  e.  NN  A  <  ( B ^
k ) )
79 axltwlin 7987 . . . . 5  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8054, 79mp3an1 1319 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
8180ancoms 266 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  ( 1  <  A  \/  A  <  B ) ) )
82813impia 1195 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  A  \/  A  <  B ) )
8367, 78, 82mpjaodan 793 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  E. k  e.  NN  A  <  ( B ^ k ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090    / cdiv 8589   NNcn 8878   NN0cn0 9135   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  expnlbnd  10600  pclemub  12241
  Copyright terms: Public domain W3C validator