ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expubnd Unicode version

Theorem expubnd 10563
Description: An upper bound on  A ^ N when  2  <_  A. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
expubnd  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2 ^ N )  x.  (
( A  -  1 ) ^ N ) ) )

Proof of Theorem expubnd
StepHypRef Expression
1 simp1 997 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  A  e.  RR )
2 2re 8978 . . . . 5  |-  2  e.  RR
3 peano2rem 8214 . . . . 5  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
4 remulcl 7930 . . . . 5  |-  ( ( 2  e.  RR  /\  ( A  -  1
)  e.  RR )  ->  ( 2  x.  ( A  -  1 ) )  e.  RR )
52, 3, 4sylancr 414 . . . 4  |-  ( A  e.  RR  ->  (
2  x.  ( A  -  1 ) )  e.  RR )
653ad2ant1 1018 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
2  x.  ( A  -  1 ) )  e.  RR )
7 simp2 998 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  N  e.  NN0 )
8 0le2 8998 . . . . . . 7  |-  0  <_  2
9 0re 7948 . . . . . . . 8  |-  0  e.  RR
10 letr 8030 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  2  e.  RR  /\  A  e.  RR )  ->  (
( 0  <_  2  /\  2  <_  A )  ->  0  <_  A
) )
119, 2, 10mp3an12 1327 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0  <_  2  /\  2  <_  A )  ->  0  <_  A
) )
128, 11mpani 430 . . . . . 6  |-  ( A  e.  RR  ->  (
2  <_  A  ->  0  <_  A ) )
1312imp 124 . . . . 5  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
0  <_  A )
14 resubcl 8211 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  2  e.  RR )  ->  ( A  -  2 )  e.  RR )
152, 14mpan2 425 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  2 )  e.  RR )
16 leadd2 8378 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  ( A  -  2 )  e.  RR )  -> 
( 2  <_  A  <->  ( ( A  -  2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) ) )
172, 16mp3an1 1324 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( A  -  2
)  e.  RR )  ->  ( 2  <_  A 
<->  ( ( A  - 
2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) ) )
1815, 17mpdan 421 . . . . . . 7  |-  ( A  e.  RR  ->  (
2  <_  A  <->  ( ( A  -  2 )  +  2 )  <_ 
( ( A  - 
2 )  +  A
) ) )
1918biimpa 296 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) )
20 recn 7935 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
21 2cn 8979 . . . . . . . 8  |-  2  e.  CC
22 npcan 8156 . . . . . . . 8  |-  ( ( A  e.  CC  /\  2  e.  CC )  ->  ( ( A  - 
2 )  +  2 )  =  A )
2320, 21, 22sylancl 413 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  2 )  +  2 )  =  A )
2423adantr 276 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  2 )  =  A )
25 ax-1cn 7895 . . . . . . . . . 10  |-  1  e.  CC
26 subdi 8332 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  A  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( A  -  1 ) )  =  ( ( 2  x.  A )  -  ( 2  x.  1 ) ) )
2721, 25, 26mp3an13 1328 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
2  x.  ( A  -  1 ) )  =  ( ( 2  x.  A )  -  ( 2  x.  1 ) ) )
28 2times 9036 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
29 2t1e2 9061 . . . . . . . . . . 11  |-  ( 2  x.  1 )  =  2
3029a1i 9 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
2  x.  1 )  =  2 )
3128, 30oveq12d 5887 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  -  ( 2  x.  1 ) )  =  ( ( A  +  A )  - 
2 ) )
32 addsub 8158 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  e.  CC  /\  2  e.  CC )  ->  (
( A  +  A
)  -  2 )  =  ( ( A  -  2 )  +  A ) )
3321, 32mp3an3 1326 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( ( A  +  A )  -  2 )  =  ( ( A  -  2 )  +  A ) )
3433anidms 397 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A  +  A
)  -  2 )  =  ( ( A  -  2 )  +  A ) )
3527, 31, 343eqtrrd 2215 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A  -  2 )  +  A )  =  ( 2  x.  ( A  -  1 ) ) )
3620, 35syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  2 )  +  A )  =  ( 2  x.  ( A  -  1 ) ) )
3736adantr 276 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  A
)  =  ( 2  x.  ( A  - 
1 ) ) )
3819, 24, 373brtr3d 4031 . . . . 5  |-  ( ( A  e.  RR  /\  2  <_  A )  ->  A  <_  ( 2  x.  ( A  -  1 ) ) )
3913, 38jca 306 . . . 4  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( 0  <_  A  /\  A  <_  ( 2  x.  ( A  - 
1 ) ) ) )
40393adant2 1016 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
0  <_  A  /\  A  <_  ( 2  x.  ( A  -  1 ) ) ) )
41 leexp1a 10561 . . 3  |-  ( ( ( A  e.  RR  /\  ( 2  x.  ( A  -  1 ) )  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  ( 2  x.  ( A  - 
1 ) ) ) )  ->  ( A ^ N )  <_  (
( 2  x.  ( A  -  1 ) ) ^ N ) )
421, 6, 7, 40, 41syl31anc 1241 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2  x.  ( A  -  1 ) ) ^ N
) )
433recnd 7976 . . . 4  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  CC )
44 mulexp 10545 . . . . 5  |-  ( ( 2  e.  CC  /\  ( A  -  1
)  e.  CC  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
4521, 44mp3an1 1324 . . . 4  |-  ( ( ( A  -  1 )  e.  CC  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
4643, 45sylan 283 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
47463adant3 1017 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
( 2  x.  ( A  -  1 ) ) ^ N )  =  ( ( 2 ^ N )  x.  ( ( A  - 
1 ) ^ N
) ) )
4842, 47breqtrd 4026 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2 ^ N )  x.  (
( A  -  1 ) ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    <_ cle 7983    - cmin 8118   2c2 8959   NN0cn0 9165   ^cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator