ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expubnd Unicode version

Theorem expubnd 9977
Description: An upper bound on  A ^ N when  2  <_  A. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
expubnd  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2 ^ N )  x.  (
( A  -  1 ) ^ N ) ) )

Proof of Theorem expubnd
StepHypRef Expression
1 simp1 943 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  A  e.  RR )
2 2re 8463 . . . . 5  |-  2  e.  RR
3 peano2rem 7728 . . . . 5  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
4 remulcl 7449 . . . . 5  |-  ( ( 2  e.  RR  /\  ( A  -  1
)  e.  RR )  ->  ( 2  x.  ( A  -  1 ) )  e.  RR )
52, 3, 4sylancr 405 . . . 4  |-  ( A  e.  RR  ->  (
2  x.  ( A  -  1 ) )  e.  RR )
653ad2ant1 964 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
2  x.  ( A  -  1 ) )  e.  RR )
7 simp2 944 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  N  e.  NN0 )
8 0le2 8483 . . . . . . 7  |-  0  <_  2
9 0re 7467 . . . . . . . 8  |-  0  e.  RR
10 letr 7547 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  2  e.  RR  /\  A  e.  RR )  ->  (
( 0  <_  2  /\  2  <_  A )  ->  0  <_  A
) )
119, 2, 10mp3an12 1263 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0  <_  2  /\  2  <_  A )  ->  0  <_  A
) )
128, 11mpani 421 . . . . . 6  |-  ( A  e.  RR  ->  (
2  <_  A  ->  0  <_  A ) )
1312imp 122 . . . . 5  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
0  <_  A )
14 resubcl 7725 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  2  e.  RR )  ->  ( A  -  2 )  e.  RR )
152, 14mpan2 416 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  2 )  e.  RR )
16 leadd2 7888 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  ( A  -  2 )  e.  RR )  -> 
( 2  <_  A  <->  ( ( A  -  2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) ) )
172, 16mp3an1 1260 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( A  -  2
)  e.  RR )  ->  ( 2  <_  A 
<->  ( ( A  - 
2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) ) )
1815, 17mpdan 412 . . . . . . 7  |-  ( A  e.  RR  ->  (
2  <_  A  <->  ( ( A  -  2 )  +  2 )  <_ 
( ( A  - 
2 )  +  A
) ) )
1918biimpa 290 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  2 )  <_  ( ( A  -  2 )  +  A ) )
20 recn 7454 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
21 2cn 8464 . . . . . . . 8  |-  2  e.  CC
22 npcan 7670 . . . . . . . 8  |-  ( ( A  e.  CC  /\  2  e.  CC )  ->  ( ( A  - 
2 )  +  2 )  =  A )
2320, 21, 22sylancl 404 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  2 )  +  2 )  =  A )
2423adantr 270 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  2 )  =  A )
25 ax-1cn 7417 . . . . . . . . . 10  |-  1  e.  CC
26 subdi 7842 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  A  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( A  -  1 ) )  =  ( ( 2  x.  A )  -  ( 2  x.  1 ) ) )
2721, 25, 26mp3an13 1264 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
2  x.  ( A  -  1 ) )  =  ( ( 2  x.  A )  -  ( 2  x.  1 ) ) )
28 2times 8514 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
29 2t1e2 8539 . . . . . . . . . . 11  |-  ( 2  x.  1 )  =  2
3029a1i 9 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
2  x.  1 )  =  2 )
3128, 30oveq12d 5652 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  -  ( 2  x.  1 ) )  =  ( ( A  +  A )  - 
2 ) )
32 addsub 7672 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  e.  CC  /\  2  e.  CC )  ->  (
( A  +  A
)  -  2 )  =  ( ( A  -  2 )  +  A ) )
3321, 32mp3an3 1262 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( ( A  +  A )  -  2 )  =  ( ( A  -  2 )  +  A ) )
3433anidms 389 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A  +  A
)  -  2 )  =  ( ( A  -  2 )  +  A ) )
3527, 31, 343eqtrrd 2125 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A  -  2 )  +  A )  =  ( 2  x.  ( A  -  1 ) ) )
3620, 35syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A  -  2 )  +  A )  =  ( 2  x.  ( A  -  1 ) ) )
3736adantr 270 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( ( A  - 
2 )  +  A
)  =  ( 2  x.  ( A  - 
1 ) ) )
3819, 24, 373brtr3d 3866 . . . . 5  |-  ( ( A  e.  RR  /\  2  <_  A )  ->  A  <_  ( 2  x.  ( A  -  1 ) ) )
3913, 38jca 300 . . . 4  |-  ( ( A  e.  RR  /\  2  <_  A )  -> 
( 0  <_  A  /\  A  <_  ( 2  x.  ( A  - 
1 ) ) ) )
40393adant2 962 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
0  <_  A  /\  A  <_  ( 2  x.  ( A  -  1 ) ) ) )
41 leexp1a 9975 . . 3  |-  ( ( ( A  e.  RR  /\  ( 2  x.  ( A  -  1 ) )  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  ( 2  x.  ( A  - 
1 ) ) ) )  ->  ( A ^ N )  <_  (
( 2  x.  ( A  -  1 ) ) ^ N ) )
421, 6, 7, 40, 41syl31anc 1177 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2  x.  ( A  -  1 ) ) ^ N
) )
433recnd 7495 . . . 4  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  CC )
44 mulexp 9959 . . . . 5  |-  ( ( 2  e.  CC  /\  ( A  -  1
)  e.  CC  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
4521, 44mp3an1 1260 . . . 4  |-  ( ( ( A  -  1 )  e.  CC  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
4643, 45sylan 277 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0 )  -> 
( ( 2  x.  ( A  -  1 ) ) ^ N
)  =  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
47463adant3 963 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  (
( 2  x.  ( A  -  1 ) ) ^ N )  =  ( ( 2 ^ N )  x.  ( ( A  - 
1 ) ^ N
) ) )
4842, 47breqtrd 3861 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_ 
( ( 2 ^ N )  x.  (
( A  -  1 ) ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   class class class wbr 3837  (class class class)co 5634   CCcc 7327   RRcr 7328   0cc0 7329   1c1 7330    + caddc 7332    x. cmul 7334    <_ cle 7502    - cmin 7632   2c2 8444   NN0cn0 8643   ^cexp 9919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-iseq 9818  df-seq3 9819  df-exp 9920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator