ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsnprmd Unicode version

Theorem dvdsnprmd 11842
Description: If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g  |-  ( ph  ->  1  <  A )
dvdsnprmd.l  |-  ( ph  ->  A  <  N )
dvdsnprmd.d  |-  ( ph  ->  A  ||  N )
Assertion
Ref Expression
dvdsnprmd  |-  ( ph  ->  -.  N  e.  Prime )

Proof of Theorem dvdsnprmd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2  |-  ( ph  ->  A  ||  N )
2 dvdszrcl 11534 . . . 4  |-  ( A 
||  N  ->  ( A  e.  ZZ  /\  N  e.  ZZ ) )
3 divides 11531 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  ||  N  <->  E. k  e.  ZZ  (
k  x.  A )  =  N ) )
41, 2, 33syl 17 . . 3  |-  ( ph  ->  ( A  ||  N  <->  E. k  e.  ZZ  (
k  x.  A )  =  N ) )
5 2z 9106 . . . . . . . . 9  |-  2  e.  ZZ
65a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
2  e.  ZZ )
7 simplr 520 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
k  e.  ZZ )
8 dvdsnprmd.l . . . . . . . . . . . . 13  |-  ( ph  ->  A  <  N )
98adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  A  < 
N )
109adantr 274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  <  N )
11 breq2 3941 . . . . . . . . . . . 12  |-  ( ( k  x.  A )  =  N  ->  ( A  <  ( k  x.  A )  <->  A  <  N ) )
1211adantl 275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( A  <  (
k  x.  A )  <-> 
A  <  N )
)
1310, 12mpbird 166 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  <  ( k  x.  A ) )
14 dvdsnprmd.g . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <  A )
15 zre 9082 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ZZ  ->  A  e.  RR )
16153ad2ant1 1003 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  A  e.  RR )
17 zre 9082 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ZZ  ->  k  e.  RR )
18173ad2ant3 1005 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  k  e.  RR )
19 0lt1 7913 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
20 0red 7791 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  ->  0  e.  RR )
21 1red 7805 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  ->  1  e.  RR )
22 lttr 7862 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
2320, 21, 15, 22syl3anc 1217 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ZZ  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
2419, 23mpani 427 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  0  <  A ) )
2524imp 123 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
0  <  A )
26253adant3 1002 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  0  <  A )
2716, 18, 263jca 1162 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  1  <  A  /\  k  e.  ZZ )  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  < 
A ) )
28273exp 1181 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
2928adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
301, 2, 293syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  <  A  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) ) )
3114, 30mpd 13 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ZZ  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) ) )
3231imp 123 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( A  e.  RR  /\  k  e.  RR  /\  0  < 
A ) )
3332adantr 274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( A  e.  RR  /\  k  e.  RR  /\  0  <  A ) )
34 ltmulgt12 8647 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  RR  /\  0  <  A )  ->  (
1  <  k  <->  A  <  ( k  x.  A ) ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( 1  <  k  <->  A  <  ( k  x.  A ) ) )
3613, 35mpbird 166 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
1  <  k )
37 df-2 8803 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3837breq1i 3944 . . . . . . . . . 10  |-  ( 2  <_  k  <->  ( 1  +  1 )  <_ 
k )
39 1zzd 9105 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  1  e.  ZZ )
40 zltp1le 9132 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  k  e.  ZZ )  ->  ( 1  <  k  <->  ( 1  +  1 )  <_  k ) )
4139, 40mpancom 419 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
1  <  k  <->  ( 1  +  1 )  <_ 
k ) )
4241bicomd 140 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
( 1  +  1 )  <_  k  <->  1  <  k ) )
4342adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( 1  +  1 )  <_  k  <->  1  <  k ) )
4443adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( ( 1  +  1 )  <_  k  <->  1  <  k ) )
4538, 44syl5bb 191 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( 2  <_  k  <->  1  <  k ) )
4636, 45mpbird 166 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
2  <_  k )
47 eluz2 9356 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  k  e.  ZZ  /\  2  <_ 
k ) )
486, 7, 46, 47syl3anbrc 1166 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
k  e.  ( ZZ>= ` 
2 ) )
495a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
2  e.  ZZ )
50 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  ->  A  e.  ZZ )
51 1zzd 9105 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  1  e.  ZZ )
52 zltp1le 9132 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  A  <->  ( 1  +  1 )  <_  A ) )
5351, 52mpancom 419 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  (
1  <  A  <->  ( 1  +  1 )  <_  A ) )
5453biimpa 294 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
( 1  +  1 )  <_  A )
5537breq1i 3944 . . . . . . . . . . . . . . . 16  |-  ( 2  <_  A  <->  ( 1  +  1 )  <_  A )
5654, 55sylibr 133 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
2  <_  A )
5749, 50, 563jca 1162 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  1  <  A )  -> 
( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
5857ex 114 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  (
1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
5958adantr 274 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
601, 2, 593syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <  A  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) ) )
6114, 60mpd 13 . . . . . . . . . 10  |-  ( ph  ->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
62 eluz2 9356 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  A  e.  ZZ  /\  2  <_  A ) )
6361, 62sylibr 133 . . . . . . . . 9  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
6463adantr 274 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  A  e.  ( ZZ>= `  2 )
)
6564adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  A  e.  ( ZZ>= ` 
2 ) )
66 nprm 11840 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  ( ZZ>= `  2 )
)  ->  -.  (
k  x.  A )  e.  Prime )
6748, 65, 66syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  -.  ( k  x.  A
)  e.  Prime )
68 eleq1 2203 . . . . . . . 8  |-  ( ( k  x.  A )  =  N  ->  (
( k  x.  A
)  e.  Prime  <->  N  e.  Prime ) )
6968notbid 657 . . . . . . 7  |-  ( ( k  x.  A )  =  N  ->  ( -.  ( k  x.  A
)  e.  Prime  <->  -.  N  e.  Prime ) )
7069adantl 275 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  -> 
( -.  ( k  x.  A )  e. 
Prime 
<->  -.  N  e.  Prime ) )
7167, 70mpbid 146 . . . . 5  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
k  x.  A )  =  N )  ->  -.  N  e.  Prime )
7271ex 114 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( k  x.  A )  =  N  ->  -.  N  e.  Prime ) )
7372rexlimdva 2552 . . 3  |-  ( ph  ->  ( E. k  e.  ZZ  ( k  x.  A )  =  N  ->  -.  N  e.  Prime ) )
744, 73sylbid 149 . 2  |-  ( ph  ->  ( A  ||  N  ->  -.  N  e.  Prime ) )
751, 74mpd 13 1  |-  ( ph  ->  -.  N  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825   2c2 8795   ZZcz 9078   ZZ>=cuz 9350    || cdvds 11529   Primecprime 11824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530  df-prm 11825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator