ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn2 Unicode version

Theorem climcn2 11272
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn2.1  |-  Z  =  ( ZZ>= `  M )
climcn2.2  |-  ( ph  ->  M  e.  ZZ )
climcn2.3a  |-  ( ph  ->  A  e.  C )
climcn2.3b  |-  ( ph  ->  B  e.  D )
climcn2.4  |-  ( (
ph  /\  ( u  e.  C  /\  v  e.  D ) )  -> 
( u F v )  e.  CC )
climcn2.5a  |-  ( ph  ->  G  ~~>  A )
climcn2.5b  |-  ( ph  ->  H  ~~>  B )
climcn2.6  |-  ( ph  ->  K  e.  W )
climcn2.7  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )
climcn2.8a  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  C )
climcn2.8b  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  e.  D )
climcn2.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( K `  k )  =  ( ( G `
 k ) F ( H `  k
) ) )
Assertion
Ref Expression
climcn2  |-  ( ph  ->  K  ~~>  ( A F B ) )
Distinct variable groups:    u, k, v, C    D, k, u, v   
y, k, z, H, v    x, k, ph, u, y, z, v    A, k, u, v, x, y, z    k, G, u, v, y, z    k, K, x    k, Z, y, z    B, k, u, v, x, y, z    k, F, u, v, x, y, z
Allowed substitution hints:    C( x, y, z)    D( x, y, z)    G( x)    H( x, u)    K( y, z, v, u)    M( x, y, z, v, u, k)    W( x, y, z, v, u, k)    Z( x, v, u)

Proof of Theorem climcn2
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climcn2.7 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )
2 climcn2.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
3 climcn2.2 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
43adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  M  e.  ZZ )
5 simprl 526 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  y  e.  RR+ )
6 eqidd 2171 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  k  e.  Z )  ->  ( G `  k
)  =  ( G `
 k ) )
7 climcn2.5a . . . . . . . . . 10  |-  ( ph  ->  G  ~~>  A )
87adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  G  ~~>  A )
92, 4, 5, 6, 8climi2 11251 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
10 simprr 527 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  z  e.  RR+ )
11 eqidd 2171 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  k  e.  Z )  ->  ( H `  k
)  =  ( H `
 k ) )
12 climcn2.5b . . . . . . . . . 10  |-  ( ph  ->  H  ~~>  B )
1312adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  H  ~~>  B )
142, 4, 10, 11, 13climi2 11251 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( H `  k
)  -  B ) )  <  z )
152rexanuz2 10955 . . . . . . . 8  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( G `  k )  -  A ) )  <  y  /\  ( abs `  ( ( H `
 k )  -  B ) )  < 
z )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y  /\  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( H `  k )  -  B ) )  <  z ) )
169, 14, 15sylanbrc 415 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z ) )
172uztrn2 9504 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
18 climcn2.8a . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  C )
19 climcn2.8b . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  e.  D )
20 oveq1 5860 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  ( G `  k )  ->  (
u  -  A )  =  ( ( G `
 k )  -  A ) )
2120fveq2d 5500 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  ( G `  k )  ->  ( abs `  ( u  -  A ) )  =  ( abs `  (
( G `  k
)  -  A ) ) )
2221breq1d 3999 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  ( G `  k )  ->  (
( abs `  (
u  -  A ) )  <  y  <->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
2322anbi1d 462 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( G `  k )  ->  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  <->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  /\  ( abs `  ( v  -  B
) )  <  z
) ) )
24 oveq1 5860 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  ( G `  k )  ->  (
u F v )  =  ( ( G `
 k ) F v ) )
2524oveq1d 5868 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  ( G `  k )  ->  (
( u F v )  -  ( A F B ) )  =  ( ( ( G `  k ) F v )  -  ( A F B ) ) )
2625fveq2d 5500 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  ( G `  k )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  =  ( abs `  ( ( ( G `  k
) F v )  -  ( A F B ) ) ) )
2726breq1d 3999 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( G `  k )  ->  (
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x  <->  ( abs `  ( ( ( G `
 k ) F v )  -  ( A F B ) ) )  <  x ) )
2823, 27imbi12d 233 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( G `  k )  ->  (
( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  <-> 
( ( ( abs `  ( ( G `  k )  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( ( G `  k ) F v )  -  ( A F B ) ) )  <  x ) ) )
29 oveq1 5860 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( H `  k )  ->  (
v  -  B )  =  ( ( H `
 k )  -  B ) )
3029fveq2d 5500 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  ( H `  k )  ->  ( abs `  ( v  -  B ) )  =  ( abs `  (
( H `  k
)  -  B ) ) )
3130breq1d 3999 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( H `  k )  ->  (
( abs `  (
v  -  B ) )  <  z  <->  ( abs `  ( ( H `  k )  -  B
) )  <  z
) )
3231anbi2d 461 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( H `  k )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  <->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  /\  ( abs `  ( ( H `  k )  -  B
) )  <  z
) ) )
33 oveq2 5861 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( H `  k )  ->  (
( G `  k
) F v )  =  ( ( G `
 k ) F ( H `  k
) ) )
3433oveq1d 5868 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  ( H `  k )  ->  (
( ( G `  k ) F v )  -  ( A F B ) )  =  ( ( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )
3534fveq2d 5500 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( H `  k )  ->  ( abs `  ( ( ( G `  k ) F v )  -  ( A F B ) ) )  =  ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) ) )
3635breq1d 3999 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( H `  k )  ->  (
( abs `  (
( ( G `  k ) F v )  -  ( A F B ) ) )  <  x  <->  ( abs `  ( ( ( G `
 k ) F ( H `  k
) )  -  ( A F B ) ) )  <  x ) )
3732, 36imbi12d 233 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( H `  k )  ->  (
( ( ( abs `  ( ( G `  k )  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( ( G `  k ) F v )  -  ( A F B ) ) )  <  x )  <-> 
( ( ( abs `  ( ( G `  k )  -  A
) )  <  y  /\  ( abs `  (
( H `  k
)  -  B ) )  <  z )  ->  ( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) ) )
3828, 37rspc2v 2847 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  k
)  e.  C  /\  ( H `  k )  e.  D )  -> 
( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x
)  ->  ( (
( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) ) )
3918, 19, 38syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  ->  ( ( ( abs `  ( ( G `  k )  -  A ) )  <  y  /\  ( abs `  ( ( H `
 k )  -  B ) )  < 
z )  ->  ( abs `  ( ( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x
) ) )
4039imp 123 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  Z )  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  ->  ( (
( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4140an32s 563 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  /\  k  e.  Z )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4217, 41sylan2 284 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4342anassrs 398 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4443ralimdva 2537 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) )  <  x ) )
4544reximdva 2572 . . . . . . . . 9  |-  ( (
ph  /\  A. u  e.  C  A. v  e.  D  ( (
( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( G `  k )  -  A ) )  <  y  /\  ( abs `  ( ( H `
 k )  -  B ) )  < 
z )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4645ex 114 . . . . . . . 8  |-  ( ph  ->  ( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x
)  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( G `  k )  -  A ) )  <  y  /\  ( abs `  ( ( H `
 k )  -  B ) )  < 
z )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) ) )
4746adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  ( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) )  <  x ) ) )
4816, 47mpid 42 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  ( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) )  <  x ) )
4948rexlimdvva 2595 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) )  <  x ) )
5049adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
511, 50mpd 13 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x )
5251ralrimiva 2543 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( G `
 k ) F ( H `  k
) )  -  ( A F B ) ) )  <  x )
53 climcn2.6 . . 3  |-  ( ph  ->  K  e.  W )
54 climcn2.9 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( K `  k )  =  ( ( G `
 k ) F ( H `  k
) ) )
55 climcn2.4 . . . 4  |-  ( (
ph  /\  ( u  e.  C  /\  v  e.  D ) )  -> 
( u F v )  e.  CC )
56 climcn2.3a . . . 4  |-  ( ph  ->  A  e.  C )
57 climcn2.3b . . . 4  |-  ( ph  ->  B  e.  D )
5855, 56, 57caovcld 6006 . . 3  |-  ( ph  ->  ( A F B )  e.  CC )
5918, 19jca 304 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
)  e.  C  /\  ( H `  k )  e.  D ) )
6055ralrimivva 2552 . . . . 5  |-  ( ph  ->  A. u  e.  C  A. v  e.  D  ( u F v )  e.  CC )
6160adantr 274 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A. u  e.  C  A. v  e.  D  ( u F v )  e.  CC )
6224eleq1d 2239 . . . . 5  |-  ( u  =  ( G `  k )  ->  (
( u F v )  e.  CC  <->  ( ( G `  k ) F v )  e.  CC ) )
6333eleq1d 2239 . . . . 5  |-  ( v  =  ( H `  k )  ->  (
( ( G `  k ) F v )  e.  CC  <->  ( ( G `  k ) F ( H `  k ) )  e.  CC ) )
6462, 63rspc2v 2847 . . . 4  |-  ( ( ( G `  k
)  e.  C  /\  ( H `  k )  e.  D )  -> 
( A. u  e.  C  A. v  e.  D  ( u F v )  e.  CC  ->  ( ( G `  k ) F ( H `  k ) )  e.  CC ) )
6559, 61, 64sylc 62 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
) F ( H `
 k ) )  e.  CC )
662, 3, 53, 54, 58, 65clim2c 11247 . 2  |-  ( ph  ->  ( K  ~~>  ( A F B )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
6752, 66mpbird 166 1  |-  ( ph  ->  K  ~~>  ( A F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772    < clt 7954    - cmin 8090   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610   abscabs 10961    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-clim 11242
This theorem is referenced by:  climadd  11289  climmul  11290  climsub  11291
  Copyright terms: Public domain W3C validator