| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvimacnv | Unicode version | ||
| Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5398 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| fvimacnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop 5746 |
. . . . 5
| |
| 2 | funfvex 5643 |
. . . . . 6
| |
| 3 | opelcnvg 4901 |
. . . . . 6
| |
| 4 | 2, 3 | sylancom 420 |
. . . . 5
|
| 5 | 1, 4 | mpbird 167 |
. . . 4
|
| 6 | elimasng 5095 |
. . . . 5
| |
| 7 | 2, 6 | sylancom 420 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | snssg 3801 |
. . . . . . . 8
| |
| 10 | 2, 9 | syl 14 |
. . . . . . 7
|
| 11 | imass2 5103 |
. . . . . . 7
| |
| 12 | 10, 11 | biimtrdi 163 |
. . . . . 6
|
| 13 | 12 | imp 124 |
. . . . 5
|
| 14 | 13 | sseld 3223 |
. . . 4
|
| 15 | 14 | ex 115 |
. . 3
|
| 16 | 8, 15 | mpid 42 |
. 2
|
| 17 | fvimacnvi 5748 |
. . . 4
| |
| 18 | 17 | ex 115 |
. . 3
|
| 19 | 18 | adantr 276 |
. 2
|
| 20 | 16, 19 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: funimass3 5750 elpreima 5753 fisumss 11898 psrbaglesuppg 14630 |
| Copyright terms: Public domain | W3C validator |