ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvimacnv Unicode version

Theorem fvimacnv 5677
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5336 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 5674 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 funfvex 5575 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
3 opelcnvg 4846 . . . . . 6  |-  ( ( ( F `  A
)  e.  _V  /\  A  e.  dom  F )  ->  ( <. ( F `  A ) ,  A >.  e.  `' F 
<-> 
<. A ,  ( F `
 A ) >.  e.  F ) )
42, 3sylancom 420 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( <. ( F `  A ) ,  A >.  e.  `' F  <->  <. A , 
( F `  A
) >.  e.  F ) )
51, 4mpbird 167 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. ( F `  A
) ,  A >.  e.  `' F )
6 elimasng 5037 . . . . 5  |-  ( ( ( F `  A
)  e.  _V  /\  A  e.  dom  F )  ->  ( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `  A
) ,  A >.  e.  `' F ) )
72, 6sylancom 420 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `
 A ) ,  A >.  e.  `' F ) )
85, 7mpbird 167 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  A  e.  ( `' F " { ( F `
 A ) } ) )
9 snssg 3756 . . . . . . . 8  |-  ( ( F `  A )  e.  _V  ->  (
( F `  A
)  e.  B  <->  { ( F `  A ) }  C_  B ) )
102, 9syl 14 . . . . . . 7  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  { ( F `  A
) }  C_  B
) )
11 imass2 5045 . . . . . . 7  |-  ( { ( F `  A
) }  C_  B  ->  ( `' F " { ( F `  A ) } ) 
C_  ( `' F " B ) )
1210, 11biimtrdi 163 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  ( `' F " { ( F `  A ) } ) 
C_  ( `' F " B ) ) )
1312imp 124 . . . . 5  |-  ( ( ( Fun  F  /\  A  e.  dom  F )  /\  ( F `  A )  e.  B
)  ->  ( `' F " { ( F `
 A ) } )  C_  ( `' F " B ) )
1413sseld 3182 . . . 4  |-  ( ( ( Fun  F  /\  A  e.  dom  F )  /\  ( F `  A )  e.  B
)  ->  ( A  e.  ( `' F " { ( F `  A ) } )  ->  A  e.  ( `' F " B ) ) )
1514ex 115 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  ( A  e.  ( `' F " { ( F `  A ) } )  ->  A  e.  ( `' F " B ) ) ) )
168, 15mpid 42 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  A  e.  ( `' F " B ) ) )
17 fvimacnvi 5676 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
1817ex 115 . . 3  |-  ( Fun 
F  ->  ( A  e.  ( `' F " B )  ->  ( F `  A )  e.  B ) )
1918adantr 276 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " B )  ->  ( F `  A )  e.  B
) )
2016, 19impbid 129 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763    C_ wss 3157   {csn 3622   <.cop 3625   `'ccnv 4662   dom cdm 4663   "cima 4666   Fun wfun 5252   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  funimass3  5678  elpreima  5681  fisumss  11557  psrbaglesuppg  14226
  Copyright terms: Public domain W3C validator