ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvimacnv Unicode version

Theorem fvimacnv 5749
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5398 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 5746 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 funfvex 5643 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
3 opelcnvg 4901 . . . . . 6  |-  ( ( ( F `  A
)  e.  _V  /\  A  e.  dom  F )  ->  ( <. ( F `  A ) ,  A >.  e.  `' F 
<-> 
<. A ,  ( F `
 A ) >.  e.  F ) )
42, 3sylancom 420 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( <. ( F `  A ) ,  A >.  e.  `' F  <->  <. A , 
( F `  A
) >.  e.  F ) )
51, 4mpbird 167 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. ( F `  A
) ,  A >.  e.  `' F )
6 elimasng 5095 . . . . 5  |-  ( ( ( F `  A
)  e.  _V  /\  A  e.  dom  F )  ->  ( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `  A
) ,  A >.  e.  `' F ) )
72, 6sylancom 420 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `
 A ) ,  A >.  e.  `' F ) )
85, 7mpbird 167 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  A  e.  ( `' F " { ( F `
 A ) } ) )
9 snssg 3801 . . . . . . . 8  |-  ( ( F `  A )  e.  _V  ->  (
( F `  A
)  e.  B  <->  { ( F `  A ) }  C_  B ) )
102, 9syl 14 . . . . . . 7  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  { ( F `  A
) }  C_  B
) )
11 imass2 5103 . . . . . . 7  |-  ( { ( F `  A
) }  C_  B  ->  ( `' F " { ( F `  A ) } ) 
C_  ( `' F " B ) )
1210, 11biimtrdi 163 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  ( `' F " { ( F `  A ) } ) 
C_  ( `' F " B ) ) )
1312imp 124 . . . . 5  |-  ( ( ( Fun  F  /\  A  e.  dom  F )  /\  ( F `  A )  e.  B
)  ->  ( `' F " { ( F `
 A ) } )  C_  ( `' F " B ) )
1413sseld 3223 . . . 4  |-  ( ( ( Fun  F  /\  A  e.  dom  F )  /\  ( F `  A )  e.  B
)  ->  ( A  e.  ( `' F " { ( F `  A ) } )  ->  A  e.  ( `' F " B ) ) )
1514ex 115 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  ( A  e.  ( `' F " { ( F `  A ) } )  ->  A  e.  ( `' F " B ) ) ) )
168, 15mpid 42 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  A  e.  ( `' F " B ) ) )
17 fvimacnvi 5748 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
1817ex 115 . . 3  |-  ( Fun 
F  ->  ( A  e.  ( `' F " B )  ->  ( F `  A )  e.  B ) )
1918adantr 276 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " B )  ->  ( F `  A )  e.  B
) )
2016, 19impbid 129 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   <.cop 3669   `'ccnv 4717   dom cdm 4718   "cima 4721   Fun wfun 5311   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by:  funimass3  5750  elpreima  5753  fisumss  11898  psrbaglesuppg  14630
  Copyright terms: Public domain W3C validator