ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvimacnv Unicode version

Theorem fvimacnv 5633
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5296 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 5630 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 funfvex 5534 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
3 opelcnvg 4809 . . . . . 6  |-  ( ( ( F `  A
)  e.  _V  /\  A  e.  dom  F )  ->  ( <. ( F `  A ) ,  A >.  e.  `' F 
<-> 
<. A ,  ( F `
 A ) >.  e.  F ) )
42, 3sylancom 420 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( <. ( F `  A ) ,  A >.  e.  `' F  <->  <. A , 
( F `  A
) >.  e.  F ) )
51, 4mpbird 167 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. ( F `  A
) ,  A >.  e.  `' F )
6 elimasng 4998 . . . . 5  |-  ( ( ( F `  A
)  e.  _V  /\  A  e.  dom  F )  ->  ( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `  A
) ,  A >.  e.  `' F ) )
72, 6sylancom 420 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `
 A ) ,  A >.  e.  `' F ) )
85, 7mpbird 167 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  A  e.  ( `' F " { ( F `
 A ) } ) )
9 snssg 3728 . . . . . . . 8  |-  ( ( F `  A )  e.  _V  ->  (
( F `  A
)  e.  B  <->  { ( F `  A ) }  C_  B ) )
102, 9syl 14 . . . . . . 7  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  { ( F `  A
) }  C_  B
) )
11 imass2 5006 . . . . . . 7  |-  ( { ( F `  A
) }  C_  B  ->  ( `' F " { ( F `  A ) } ) 
C_  ( `' F " B ) )
1210, 11biimtrdi 163 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  ( `' F " { ( F `  A ) } ) 
C_  ( `' F " B ) ) )
1312imp 124 . . . . 5  |-  ( ( ( Fun  F  /\  A  e.  dom  F )  /\  ( F `  A )  e.  B
)  ->  ( `' F " { ( F `
 A ) } )  C_  ( `' F " B ) )
1413sseld 3156 . . . 4  |-  ( ( ( Fun  F  /\  A  e.  dom  F )  /\  ( F `  A )  e.  B
)  ->  ( A  e.  ( `' F " { ( F `  A ) } )  ->  A  e.  ( `' F " B ) ) )
1514ex 115 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  ( A  e.  ( `' F " { ( F `  A ) } )  ->  A  e.  ( `' F " B ) ) ) )
168, 15mpid 42 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  A  e.  ( `' F " B ) ) )
17 fvimacnvi 5632 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
1817ex 115 . . 3  |-  ( Fun 
F  ->  ( A  e.  ( `' F " B )  ->  ( F `  A )  e.  B ) )
1918adantr 276 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " B )  ->  ( F `  A )  e.  B
) )
2016, 19impbid 129 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   _Vcvv 2739    C_ wss 3131   {csn 3594   <.cop 3597   `'ccnv 4627   dom cdm 4628   "cima 4631   Fun wfun 5212   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  funimass3  5634  elpreima  5637  fisumss  11402
  Copyright terms: Public domain W3C validator