ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprmgcdb Unicode version

Theorem coprmgcdb 12256
Description: Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
coprmgcdb  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( A  gcd  B )  =  1 ) )
Distinct variable groups:    A, i    B, i

Proof of Theorem coprmgcdb
StepHypRef Expression
1 nnz 9345 . . . 4  |-  ( A  e.  NN  ->  A  e.  ZZ )
2 nnz 9345 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
3 gcddvds 12130 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
5 simpr 110 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )
6 gcdnncl 12134 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
76adantr 276 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A  gcd  B )  e.  NN )
8 breq1 4036 . . . . . . . 8  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  A  <->  ( A  gcd  B )  ||  A ) )
9 breq1 4036 . . . . . . . 8  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  B  <->  ( A  gcd  B )  ||  B ) )
108, 9anbi12d 473 . . . . . . 7  |-  ( i  =  ( A  gcd  B )  ->  ( (
i  ||  A  /\  i  ||  B )  <->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) ) )
11 eqeq1 2203 . . . . . . 7  |-  ( i  =  ( A  gcd  B )  ->  ( i  =  1  <->  ( A  gcd  B )  =  1 ) )
1210, 11imbi12d 234 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( ( ( A  gcd  B ) 
||  A  /\  ( A  gcd  B )  ||  B )  ->  ( A  gcd  B )  =  1 ) ) )
1312rspcv 2864 . . . . 5  |-  ( ( A  gcd  B )  e.  NN  ->  ( A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( A  gcd  B
)  =  1 ) ) )
147, 13syl 14 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A. i  e.  NN  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  ->  ( (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( A  gcd  B
)  =  1 ) ) )
155, 14mpid 42 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A. i  e.  NN  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  ->  ( A  gcd  B )  =  1 ) )
164, 15mpdan 421 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  -> 
( A  gcd  B
)  =  1 ) )
17 simpl 109 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( A  e.  NN  /\  B  e.  NN ) )
1817anim1i 340 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( A  e.  NN  /\  B  e.  NN )  /\  i  e.  NN ) )
1918ancomd 267 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  e.  NN  /\  ( A  e.  NN  /\  B  e.  NN ) ) )
20 3anass 984 . . . . . . 7  |-  ( ( i  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  <->  ( i  e.  NN  /\  ( A  e.  NN  /\  B  e.  NN ) ) )
2119, 20sylibr 134 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  e.  NN  /\  A  e.  NN  /\  B  e.  NN ) )
22 nndvdslegcd 12132 . . . . . 6  |-  ( ( i  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  <_  ( A  gcd  B ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  <_  ( A  gcd  B ) ) )
24 breq2 4037 . . . . . . . 8  |-  ( ( A  gcd  B )  =  1  ->  (
i  <_  ( A  gcd  B )  <->  i  <_  1 ) )
2524adantr 276 . . . . . . 7  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
( A  gcd  B
)  <->  i  <_  1
) )
26 nnge1 9013 . . . . . . . . 9  |-  ( i  e.  NN  ->  1  <_  i )
27 nnre 8997 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  i  e.  RR )
28 1red 8041 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  1  e.  RR )
2927, 28letri3d 8142 . . . . . . . . . 10  |-  ( i  e.  NN  ->  (
i  =  1  <->  (
i  <_  1  /\  1  <_  i ) ) )
3029biimprd 158 . . . . . . . . 9  |-  ( i  e.  NN  ->  (
( i  <_  1  /\  1  <_  i )  ->  i  =  1 ) )
3126, 30mpan2d 428 . . . . . . . 8  |-  ( i  e.  NN  ->  (
i  <_  1  ->  i  =  1 ) )
3231adantl 277 . . . . . . 7  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
1  ->  i  = 
1 ) )
3325, 32sylbid 150 . . . . . 6  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
( A  gcd  B
)  ->  i  = 
1 ) )
3433adantll 476 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  <_  ( A  gcd  B )  ->  i  =  1 ) )
3523, 34syld 45 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 ) )
3635ralrimiva 2570 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 ) )
3736ex 115 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 ) ) )
3816, 37impbid 129 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( A  gcd  B )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4033  (class class class)co 5922   1c1 7880    <_ cle 8062   NNcn 8990   ZZcz 9326    || cdvds 11952    gcd cgcd 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121
This theorem is referenced by:  coprmdvds1  12259
  Copyright terms: Public domain W3C validator