ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprmgcdb Unicode version

Theorem coprmgcdb 12525
Description: Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
coprmgcdb  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( A  gcd  B )  =  1 ) )
Distinct variable groups:    A, i    B, i

Proof of Theorem coprmgcdb
StepHypRef Expression
1 nnz 9426 . . . 4  |-  ( A  e.  NN  ->  A  e.  ZZ )
2 nnz 9426 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
3 gcddvds 12399 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
5 simpr 110 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )
6 gcdnncl 12403 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
76adantr 276 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A  gcd  B )  e.  NN )
8 breq1 4062 . . . . . . . 8  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  A  <->  ( A  gcd  B )  ||  A ) )
9 breq1 4062 . . . . . . . 8  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  B  <->  ( A  gcd  B )  ||  B ) )
108, 9anbi12d 473 . . . . . . 7  |-  ( i  =  ( A  gcd  B )  ->  ( (
i  ||  A  /\  i  ||  B )  <->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) ) )
11 eqeq1 2214 . . . . . . 7  |-  ( i  =  ( A  gcd  B )  ->  ( i  =  1  <->  ( A  gcd  B )  =  1 ) )
1210, 11imbi12d 234 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( ( ( A  gcd  B ) 
||  A  /\  ( A  gcd  B )  ||  B )  ->  ( A  gcd  B )  =  1 ) ) )
1312rspcv 2880 . . . . 5  |-  ( ( A  gcd  B )  e.  NN  ->  ( A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( A  gcd  B
)  =  1 ) ) )
147, 13syl 14 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A. i  e.  NN  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  ->  ( (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( A  gcd  B
)  =  1 ) ) )
155, 14mpid 42 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A. i  e.  NN  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  ->  ( A  gcd  B )  =  1 ) )
164, 15mpdan 421 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  -> 
( A  gcd  B
)  =  1 ) )
17 simpl 109 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( A  e.  NN  /\  B  e.  NN ) )
1817anim1i 340 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( A  e.  NN  /\  B  e.  NN )  /\  i  e.  NN ) )
1918ancomd 267 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  e.  NN  /\  ( A  e.  NN  /\  B  e.  NN ) ) )
20 3anass 985 . . . . . . 7  |-  ( ( i  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  <->  ( i  e.  NN  /\  ( A  e.  NN  /\  B  e.  NN ) ) )
2119, 20sylibr 134 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  e.  NN  /\  A  e.  NN  /\  B  e.  NN ) )
22 nndvdslegcd 12401 . . . . . 6  |-  ( ( i  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  <_  ( A  gcd  B ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  <_  ( A  gcd  B ) ) )
24 breq2 4063 . . . . . . . 8  |-  ( ( A  gcd  B )  =  1  ->  (
i  <_  ( A  gcd  B )  <->  i  <_  1 ) )
2524adantr 276 . . . . . . 7  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
( A  gcd  B
)  <->  i  <_  1
) )
26 nnge1 9094 . . . . . . . . 9  |-  ( i  e.  NN  ->  1  <_  i )
27 nnre 9078 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  i  e.  RR )
28 1red 8122 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  1  e.  RR )
2927, 28letri3d 8223 . . . . . . . . . 10  |-  ( i  e.  NN  ->  (
i  =  1  <->  (
i  <_  1  /\  1  <_  i ) ) )
3029biimprd 158 . . . . . . . . 9  |-  ( i  e.  NN  ->  (
( i  <_  1  /\  1  <_  i )  ->  i  =  1 ) )
3126, 30mpan2d 428 . . . . . . . 8  |-  ( i  e.  NN  ->  (
i  <_  1  ->  i  =  1 ) )
3231adantl 277 . . . . . . 7  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
1  ->  i  = 
1 ) )
3325, 32sylbid 150 . . . . . 6  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
( A  gcd  B
)  ->  i  = 
1 ) )
3433adantll 476 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  <_  ( A  gcd  B )  ->  i  =  1 ) )
3523, 34syld 45 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 ) )
3635ralrimiva 2581 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 ) )
3736ex 115 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 ) ) )
3816, 37impbid 129 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( A  gcd  B )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   class class class wbr 4059  (class class class)co 5967   1c1 7961    <_ cle 8143   NNcn 9071   ZZcz 9407    || cdvds 12213    gcd cgcd 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390
This theorem is referenced by:  coprmdvds1  12528
  Copyright terms: Public domain W3C validator