ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprmgcdb Unicode version

Theorem coprmgcdb 12020
Description: Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
coprmgcdb  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( A  gcd  B )  =  1 ) )
Distinct variable groups:    A, i    B, i

Proof of Theorem coprmgcdb
StepHypRef Expression
1 nnz 9210 . . . 4  |-  ( A  e.  NN  ->  A  e.  ZZ )
2 nnz 9210 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
3 gcddvds 11896 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
41, 2, 3syl2an 287 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
5 simpr 109 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )
6 gcdnncl 11900 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
76adantr 274 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A  gcd  B )  e.  NN )
8 breq1 3985 . . . . . . . 8  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  A  <->  ( A  gcd  B )  ||  A ) )
9 breq1 3985 . . . . . . . 8  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  B  <->  ( A  gcd  B )  ||  B ) )
108, 9anbi12d 465 . . . . . . 7  |-  ( i  =  ( A  gcd  B )  ->  ( (
i  ||  A  /\  i  ||  B )  <->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) ) )
11 eqeq1 2172 . . . . . . 7  |-  ( i  =  ( A  gcd  B )  ->  ( i  =  1  <->  ( A  gcd  B )  =  1 ) )
1210, 11imbi12d 233 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( ( ( A  gcd  B ) 
||  A  /\  ( A  gcd  B )  ||  B )  ->  ( A  gcd  B )  =  1 ) ) )
1312rspcv 2826 . . . . 5  |-  ( ( A  gcd  B )  e.  NN  ->  ( A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( A  gcd  B
)  =  1 ) ) )
147, 13syl 14 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A. i  e.  NN  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  ->  ( (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B )  -> 
( A  gcd  B
)  =  1 ) ) )
155, 14mpid 42 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )  ->  ( A. i  e.  NN  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 )  ->  ( A  gcd  B )  =  1 ) )
164, 15mpdan 418 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  -> 
( A  gcd  B
)  =  1 ) )
17 simpl 108 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( A  e.  NN  /\  B  e.  NN ) )
1817anim1i 338 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( A  e.  NN  /\  B  e.  NN )  /\  i  e.  NN ) )
1918ancomd 265 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  e.  NN  /\  ( A  e.  NN  /\  B  e.  NN ) ) )
20 3anass 972 . . . . . . 7  |-  ( ( i  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  <->  ( i  e.  NN  /\  ( A  e.  NN  /\  B  e.  NN ) ) )
2119, 20sylibr 133 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  e.  NN  /\  A  e.  NN  /\  B  e.  NN ) )
22 nndvdslegcd 11898 . . . . . 6  |-  ( ( i  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  <_  ( A  gcd  B ) ) )
2321, 22syl 14 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  <_  ( A  gcd  B ) ) )
24 breq2 3986 . . . . . . . 8  |-  ( ( A  gcd  B )  =  1  ->  (
i  <_  ( A  gcd  B )  <->  i  <_  1 ) )
2524adantr 274 . . . . . . 7  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
( A  gcd  B
)  <->  i  <_  1
) )
26 nnge1 8880 . . . . . . . . 9  |-  ( i  e.  NN  ->  1  <_  i )
27 nnre 8864 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  i  e.  RR )
28 1red 7914 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  1  e.  RR )
2927, 28letri3d 8014 . . . . . . . . . 10  |-  ( i  e.  NN  ->  (
i  =  1  <->  (
i  <_  1  /\  1  <_  i ) ) )
3029biimprd 157 . . . . . . . . 9  |-  ( i  e.  NN  ->  (
( i  <_  1  /\  1  <_  i )  ->  i  =  1 ) )
3126, 30mpan2d 425 . . . . . . . 8  |-  ( i  e.  NN  ->  (
i  <_  1  ->  i  =  1 ) )
3231adantl 275 . . . . . . 7  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
1  ->  i  = 
1 ) )
3325, 32sylbid 149 . . . . . 6  |-  ( ( ( A  gcd  B
)  =  1  /\  i  e.  NN )  ->  ( i  <_ 
( A  gcd  B
)  ->  i  = 
1 ) )
3433adantll 468 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
i  <_  ( A  gcd  B )  ->  i  =  1 ) )
3523, 34syld 45 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  i  e.  NN )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  =  1 ) )
3635ralrimiva 2539 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 ) )
3736ex 114 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  A. i  e.  NN  ( ( i  ||  A  /\  i  ||  B
)  ->  i  = 
1 ) ) )
3816, 37impbid 128 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A. i  e.  NN  ( ( i 
||  A  /\  i  ||  B )  ->  i  =  1 )  <->  ( A  gcd  B )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   class class class wbr 3982  (class class class)co 5842   1c1 7754    <_ cle 7934   NNcn 8857   ZZcz 9191    || cdvds 11727    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  coprmdvds1  12023
  Copyright terms: Public domain W3C validator