ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1 Unicode version

Theorem climcn1 11454
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1  |-  Z  =  ( ZZ>= `  M )
climcn1.2  |-  ( ph  ->  M  e.  ZZ )
climcn1.3  |-  ( ph  ->  A  e.  B )
climcn1.4  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
climcn1.5  |-  ( ph  ->  G  ~~>  A )
climcn1.6  |-  ( ph  ->  H  e.  W )
climcn1.7  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
climcn1.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
climcn1.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
Assertion
Ref Expression
climcn1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Distinct variable groups:    x, k, y, z, A    B, k,
z    k, G, y, z   
k, H, x    k, F, x, y, z    ph, k, x, y, z    k, Z, y
Allowed substitution hints:    B( x, y)    G( x)    H( y, z)    M( x, y, z, k)    W( x, y, z, k)    Z( x, z)

Proof of Theorem climcn1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2 climcn1.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
3 climcn1.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
43adantr 276 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
5 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
6 eqidd 2194 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
7 climcn1.5 . . . . . . . . 9  |-  ( ph  ->  G  ~~>  A )
87adantr 276 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  G  ~~>  A )
92, 4, 5, 6, 8climi2 11434 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
102uztrn2 9613 . . . . . . . . . . . 12  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
11 climcn1.8 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
1211adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
13 oveq1 5926 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
z  -  A )  =  ( ( G `
 k )  -  A ) )
1413fveq2d 5559 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( z  -  A ) )  =  ( abs `  (
( G `  k
)  -  A ) ) )
1514breq1d 4040 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
16 fveq2 5555 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( G `  k )  ->  ( F `  z )  =  ( F `  ( G `  k ) ) )
1716oveq1d 5934 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  -  ( F `
 A ) )  =  ( ( F `
 ( G `  k ) )  -  ( F `  A ) ) )
1817fveq2d 5559 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  =  ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) ) )
1918breq1d 4040 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x  <->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2015, 19imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( z  =  ( G `  k )  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) ) )
2120rspcva 2863 . . . . . . . . . . . . . 14  |-  ( ( ( G `  k
)  e.  B  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2212, 21sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2322an32s 568 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  k  e.  Z )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2410, 23sylan2 286 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2524anassrs 400 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2625ralimdva 2561 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2726reximdva 2596 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
2827ex 115 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) ) )
299, 28mpid 42 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3029rexlimdva 2611 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3130adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
321, 31mpd 13 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x )
3332ralrimiva 2567 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x )
34 climcn1.6 . . 3  |-  ( ph  ->  H  e.  W )
35 climcn1.9 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
36 fveq2 5555 . . . . 5  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
3736eleq1d 2262 . . . 4  |-  ( z  =  A  ->  (
( F `  z
)  e.  CC  <->  ( F `  A )  e.  CC ) )
38 climcn1.4 . . . . 5  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
3938ralrimiva 2567 . . . 4  |-  ( ph  ->  A. z  e.  B  ( F `  z )  e.  CC )
40 climcn1.3 . . . 4  |-  ( ph  ->  A  e.  B )
4137, 39, 40rspcdva 2870 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
4216eleq1d 2262 . . . 4  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  e.  CC  <->  ( F `  ( G `  k
) )  e.  CC ) )
4339adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A. z  e.  B  ( F `  z )  e.  CC )
4442, 43, 11rspcdva 2870 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( G `  k ) )  e.  CC )
452, 3, 34, 35, 41, 44clim2c 11430 . 2  |-  ( ph  ->  ( H  ~~>  ( F `
 A )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
4633, 45mpbird 167 1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872    < clt 8056    - cmin 8192   ZZcz 9320   ZZ>=cuz 9595   RR+crp 9722   abscabs 11144    ~~> cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-clim 11425
This theorem is referenced by:  climcn1lem  11465  climcncf  14763
  Copyright terms: Public domain W3C validator