ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1 Unicode version

Theorem climcn1 11734
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1  |-  Z  =  ( ZZ>= `  M )
climcn1.2  |-  ( ph  ->  M  e.  ZZ )
climcn1.3  |-  ( ph  ->  A  e.  B )
climcn1.4  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
climcn1.5  |-  ( ph  ->  G  ~~>  A )
climcn1.6  |-  ( ph  ->  H  e.  W )
climcn1.7  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
climcn1.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
climcn1.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
Assertion
Ref Expression
climcn1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Distinct variable groups:    x, k, y, z, A    B, k,
z    k, G, y, z   
k, H, x    k, F, x, y, z    ph, k, x, y, z    k, Z, y
Allowed substitution hints:    B( x, y)    G( x)    H( y, z)    M( x, y, z, k)    W( x, y, z, k)    Z( x, z)

Proof of Theorem climcn1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2 climcn1.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
3 climcn1.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
43adantr 276 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
5 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
6 eqidd 2208 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
7 climcn1.5 . . . . . . . . 9  |-  ( ph  ->  G  ~~>  A )
87adantr 276 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  G  ~~>  A )
92, 4, 5, 6, 8climi2 11714 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
102uztrn2 9701 . . . . . . . . . . . 12  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
11 climcn1.8 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
1211adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
13 oveq1 5974 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
z  -  A )  =  ( ( G `
 k )  -  A ) )
1413fveq2d 5603 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( z  -  A ) )  =  ( abs `  (
( G `  k
)  -  A ) ) )
1514breq1d 4069 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
16 fveq2 5599 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( G `  k )  ->  ( F `  z )  =  ( F `  ( G `  k ) ) )
1716oveq1d 5982 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  -  ( F `
 A ) )  =  ( ( F `
 ( G `  k ) )  -  ( F `  A ) ) )
1817fveq2d 5603 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  =  ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) ) )
1918breq1d 4069 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x  <->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2015, 19imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( z  =  ( G `  k )  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) ) )
2120rspcva 2882 . . . . . . . . . . . . . 14  |-  ( ( ( G `  k
)  e.  B  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2212, 21sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2322an32s 568 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  k  e.  Z )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2410, 23sylan2 286 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2524anassrs 400 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2625ralimdva 2575 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2726reximdva 2610 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
2827ex 115 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) ) )
299, 28mpid 42 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3029rexlimdva 2625 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3130adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
321, 31mpd 13 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x )
3332ralrimiva 2581 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x )
34 climcn1.6 . . 3  |-  ( ph  ->  H  e.  W )
35 climcn1.9 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
36 fveq2 5599 . . . . 5  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
3736eleq1d 2276 . . . 4  |-  ( z  =  A  ->  (
( F `  z
)  e.  CC  <->  ( F `  A )  e.  CC ) )
38 climcn1.4 . . . . 5  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
3938ralrimiva 2581 . . . 4  |-  ( ph  ->  A. z  e.  B  ( F `  z )  e.  CC )
40 climcn1.3 . . . 4  |-  ( ph  ->  A  e.  B )
4137, 39, 40rspcdva 2889 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
4216eleq1d 2276 . . . 4  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  e.  CC  <->  ( F `  ( G `  k
) )  e.  CC ) )
4339adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A. z  e.  B  ( F `  z )  e.  CC )
4442, 43, 11rspcdva 2889 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( G `  k ) )  e.  CC )
452, 3, 34, 35, 41, 44clim2c 11710 . 2  |-  ( ph  ->  ( H  ~~>  ( F `
 A )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
4633, 45mpbird 167 1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958    < clt 8142    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683   RR+crp 9810   abscabs 11423    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-clim 11705
This theorem is referenced by:  climcn1lem  11745  climcncf  15171
  Copyright terms: Public domain W3C validator