ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mnnnnn0 Unicode version

Theorem 0mnnnnn0 9401
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
0mnnnnn0  |-  ( N  e.  NN  ->  (
0  -  N )  e/  NN0 )

Proof of Theorem 0mnnnnn0
StepHypRef Expression
1 0re 8146 . . 3  |-  0  e.  RR
2 df-neg 8320 . . . . . 6  |-  -u N  =  ( 0  -  N )
32eqcomi 2233 . . . . 5  |-  ( 0  -  N )  = 
-u N
43eleq1i 2295 . . . 4  |-  ( ( 0  -  N )  e.  NN0  <->  -u N  e.  NN0 )
5 nn0ge0 9394 . . . . 5  |-  ( -u N  e.  NN0  ->  0  <_ 
-u N )
6 nnre 9117 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
76le0neg1d 8664 . . . . . 6  |-  ( N  e.  NN  ->  ( N  <_  0  <->  0  <_  -u N ) )
8 nngt0 9135 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
9 0red 8147 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  e.  RR )
106, 9lenltd 8264 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  <_  0  <->  -.  0  <  N ) )
11 pm2.21 620 . . . . . . . 8  |-  ( -.  0  <  N  -> 
( 0  <  N  ->  -.  0  e.  RR ) )
1210, 11biimtrdi 163 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  <_  0  ->  (
0  <  N  ->  -.  0  e.  RR ) ) )
138, 12mpid 42 . . . . . 6  |-  ( N  e.  NN  ->  ( N  <_  0  ->  -.  0  e.  RR )
)
147, 13sylbird 170 . . . . 5  |-  ( N  e.  NN  ->  (
0  <_  -u N  ->  -.  0  e.  RR ) )
155, 14syl5 32 . . . 4  |-  ( N  e.  NN  ->  ( -u N  e.  NN0  ->  -.  0  e.  RR ) )
164, 15biimtrid 152 . . 3  |-  ( N  e.  NN  ->  (
( 0  -  N
)  e.  NN0  ->  -.  0  e.  RR ) )
171, 16mt2i 647 . 2  |-  ( N  e.  NN  ->  -.  ( 0  -  N
)  e.  NN0 )
18 df-nel 2496 . 2  |-  ( ( 0  -  N )  e/  NN0  <->  -.  ( 0  -  N )  e. 
NN0 )
1917, 18sylibr 134 1  |-  ( N  e.  NN  ->  (
0  -  N )  e/  NN0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2200    e/ wnel 2495   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999    < clt 8181    <_ cle 8182    - cmin 8317   -ucneg 8318   NNcn 9110   NN0cn0 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator