ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mnnnnn0 Unicode version

Theorem 0mnnnnn0 9300
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
0mnnnnn0  |-  ( N  e.  NN  ->  (
0  -  N )  e/  NN0 )

Proof of Theorem 0mnnnnn0
StepHypRef Expression
1 0re 8045 . . 3  |-  0  e.  RR
2 df-neg 8219 . . . . . 6  |-  -u N  =  ( 0  -  N )
32eqcomi 2200 . . . . 5  |-  ( 0  -  N )  = 
-u N
43eleq1i 2262 . . . 4  |-  ( ( 0  -  N )  e.  NN0  <->  -u N  e.  NN0 )
5 nn0ge0 9293 . . . . 5  |-  ( -u N  e.  NN0  ->  0  <_ 
-u N )
6 nnre 9016 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
76le0neg1d 8563 . . . . . 6  |-  ( N  e.  NN  ->  ( N  <_  0  <->  0  <_  -u N ) )
8 nngt0 9034 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
9 0red 8046 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  e.  RR )
106, 9lenltd 8163 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  <_  0  <->  -.  0  <  N ) )
11 pm2.21 618 . . . . . . . 8  |-  ( -.  0  <  N  -> 
( 0  <  N  ->  -.  0  e.  RR ) )
1210, 11biimtrdi 163 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  <_  0  ->  (
0  <  N  ->  -.  0  e.  RR ) ) )
138, 12mpid 42 . . . . . 6  |-  ( N  e.  NN  ->  ( N  <_  0  ->  -.  0  e.  RR )
)
147, 13sylbird 170 . . . . 5  |-  ( N  e.  NN  ->  (
0  <_  -u N  ->  -.  0  e.  RR ) )
155, 14syl5 32 . . . 4  |-  ( N  e.  NN  ->  ( -u N  e.  NN0  ->  -.  0  e.  RR ) )
164, 15biimtrid 152 . . 3  |-  ( N  e.  NN  ->  (
( 0  -  N
)  e.  NN0  ->  -.  0  e.  RR ) )
171, 16mt2i 645 . 2  |-  ( N  e.  NN  ->  -.  ( 0  -  N
)  e.  NN0 )
18 df-nel 2463 . 2  |-  ( ( 0  -  N )  e/  NN0  <->  -.  ( 0  -  N )  e. 
NN0 )
1917, 18sylibr 134 1  |-  ( N  e.  NN  ->  (
0  -  N )  e/  NN0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2167    e/ wnel 2462   class class class wbr 4034  (class class class)co 5925   RRcr 7897   0cc0 7898    < clt 8080    <_ cle 8081    - cmin 8216   -ucneg 8217   NNcn 9009   NN0cn0 9268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator