ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mnnnnn0 Unicode version

Theorem 0mnnnnn0 9281
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
0mnnnnn0  |-  ( N  e.  NN  ->  (
0  -  N )  e/  NN0 )

Proof of Theorem 0mnnnnn0
StepHypRef Expression
1 0re 8026 . . 3  |-  0  e.  RR
2 df-neg 8200 . . . . . 6  |-  -u N  =  ( 0  -  N )
32eqcomi 2200 . . . . 5  |-  ( 0  -  N )  = 
-u N
43eleq1i 2262 . . . 4  |-  ( ( 0  -  N )  e.  NN0  <->  -u N  e.  NN0 )
5 nn0ge0 9274 . . . . 5  |-  ( -u N  e.  NN0  ->  0  <_ 
-u N )
6 nnre 8997 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
76le0neg1d 8544 . . . . . 6  |-  ( N  e.  NN  ->  ( N  <_  0  <->  0  <_  -u N ) )
8 nngt0 9015 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
9 0red 8027 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  e.  RR )
106, 9lenltd 8144 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  <_  0  <->  -.  0  <  N ) )
11 pm2.21 618 . . . . . . . 8  |-  ( -.  0  <  N  -> 
( 0  <  N  ->  -.  0  e.  RR ) )
1210, 11biimtrdi 163 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  <_  0  ->  (
0  <  N  ->  -.  0  e.  RR ) ) )
138, 12mpid 42 . . . . . 6  |-  ( N  e.  NN  ->  ( N  <_  0  ->  -.  0  e.  RR )
)
147, 13sylbird 170 . . . . 5  |-  ( N  e.  NN  ->  (
0  <_  -u N  ->  -.  0  e.  RR ) )
155, 14syl5 32 . . . 4  |-  ( N  e.  NN  ->  ( -u N  e.  NN0  ->  -.  0  e.  RR ) )
164, 15biimtrid 152 . . 3  |-  ( N  e.  NN  ->  (
( 0  -  N
)  e.  NN0  ->  -.  0  e.  RR ) )
171, 16mt2i 645 . 2  |-  ( N  e.  NN  ->  -.  ( 0  -  N
)  e.  NN0 )
18 df-nel 2463 . 2  |-  ( ( 0  -  N )  e/  NN0  <->  -.  ( 0  -  N )  e. 
NN0 )
1917, 18sylibr 134 1  |-  ( N  e.  NN  ->  (
0  -  N )  e/  NN0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2167    e/ wnel 2462   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879    < clt 8061    <_ cle 8062    - cmin 8197   -ucneg 8198   NNcn 8990   NN0cn0 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator