ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfco Unicode version

Theorem cncfco 15005
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
cncfco.5  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
Assertion
Ref Expression
cncfco  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )

Proof of Theorem cncfco
Dummy variables  w  u  x  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
2 cncff 14991 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  G : B
--> C )
31, 2syl 14 . . 3  |-  ( ph  ->  G : B --> C )
4 cncfco.4 . . . 4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 14991 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 14 . . 3  |-  ( ph  ->  F : A --> B )
7 fco 5440 . . 3  |-  ( ( G : B --> C  /\  F : A --> B )  ->  ( G  o.  F ) : A --> C )
83, 6, 7syl2anc 411 . 2  |-  ( ph  ->  ( G  o.  F
) : A --> C )
91adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  G  e.  ( B -cn-> C ) )
106adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  F : A --> B )
11 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  x  e.  A )
1210, 11ffvelcdmd 5715 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( F `  x
)  e.  B )
13 simprr 531 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
y  e.  RR+ )
14 cncfi 14992 . . . . 5  |-  ( ( G  e.  ( B
-cn-> C )  /\  ( F `  x )  e.  B  /\  y  e.  RR+ )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
159, 12, 13, 14syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
164ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  F  e.  ( A -cn-> B ) )
17 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  x  e.  A
)
18 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  u  e.  RR+ )
19 cncfi 14992 . . . . . . 7  |-  ( ( F  e.  ( A
-cn-> B )  /\  x  e.  A  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
2016, 17, 18, 19syl3anc 1249 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
216ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  F : A --> B )
22 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  w  e.  A )
2321, 22ffvelcdmd 5715 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( F `  w
)  e.  B )
24 fvoveq1 5966 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( F `  w )  ->  ( abs `  ( v  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
2524breq1d 4053 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( F `  w )  ->  (
( abs `  (
v  -  ( F `
 x ) ) )  <  u  <->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
) )
2625imbrov2fvoveq 5968 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( F `  w )  ->  (
( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
2726rspcv 2872 . . . . . . . . . . . . . . 15  |-  ( ( F `  w )  e.  B  ->  ( A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
29 fvco3 5649 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  w  e.  A )  ->  ( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3021, 22, 29syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3117adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  x  e.  A )
32 fvco3 5649 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
3321, 31, 32syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
3430, 33oveq12d 5961 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
)  =  ( ( G `  ( F `
 w ) )  -  ( G `  ( F `  x ) ) ) )
3534fveq2d 5579 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  =  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) ) )
3635breq1d 4053 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y  <->  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
3736imbi2d 230 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
3828, 37sylibrd 169 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
3938imp 124 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4039an32s 568 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4140imim2d 54 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4241anassrs 400 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  /\  w  e.  A )  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4342ralimdva 2572 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  ->  ( A. w  e.  A  (
( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4443reximdva 2607 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
)  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4544ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
4620, 45mpid 42 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4746rexlimdva 2622 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( E. u  e.  RR+  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4815, 47mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
) )  <  y
) )
4948ralrimivva 2587 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
50 cncfrss 14989 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
514, 50syl 14 . . 3  |-  ( ph  ->  A  C_  CC )
52 cncfrss2 14990 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  C  C_  CC )
531, 52syl 14 . . 3  |-  ( ph  ->  C  C_  CC )
54 elcncf2 14988 . . 3  |-  ( ( A  C_  CC  /\  C  C_  CC )  ->  (
( G  o.  F
)  e.  ( A
-cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
5551, 53, 54syl2anc 411 . 2  |-  ( ph  ->  ( ( G  o.  F )  e.  ( A -cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
568, 49, 55mpbir2and 946 1  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484    C_ wss 3165   class class class wbr 4043    o. ccom 4678   -->wf 5266   ` cfv 5270  (class class class)co 5943   CCcc 7922    < clt 8106    - cmin 8242   RR+crp 9774   abscabs 11250   -cn->ccncf 14984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-map 6736  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-2 9094  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-cncf 14985
This theorem is referenced by:  cncfmpt1f  15012  cdivcncfap  15018  negfcncf  15020  divcncfap  15028  sincn  15183  coscn  15184
  Copyright terms: Public domain W3C validator