| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfco | Unicode version | ||
| Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfco.4 |
|
| cncfco.5 |
|
| Ref | Expression |
|---|---|
| cncfco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfco.5 |
. . . 4
| |
| 2 | cncff 15134 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | cncfco.4 |
. . . 4
| |
| 5 | cncff 15134 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fco 5456 |
. . 3
| |
| 8 | 3, 6, 7 | syl2anc 411 |
. 2
|
| 9 | 1 | adantr 276 |
. . . . 5
|
| 10 | 6 | adantr 276 |
. . . . . 6
|
| 11 | simprl 529 |
. . . . . 6
| |
| 12 | 10, 11 | ffvelcdmd 5734 |
. . . . 5
|
| 13 | simprr 531 |
. . . . 5
| |
| 14 | cncfi 15135 |
. . . . 5
| |
| 15 | 9, 12, 13, 14 | syl3anc 1250 |
. . . 4
|
| 16 | 4 | ad2antrr 488 |
. . . . . . 7
|
| 17 | simplrl 535 |
. . . . . . 7
| |
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | cncfi 15135 |
. . . . . . 7
| |
| 20 | 16, 17, 18, 19 | syl3anc 1250 |
. . . . . 6
|
| 21 | 6 | ad3antrrr 492 |
. . . . . . . . . . . . . . . 16
|
| 22 | simprr 531 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 21, 22 | ffvelcdmd 5734 |
. . . . . . . . . . . . . . 15
|
| 24 | fvoveq1 5985 |
. . . . . . . . . . . . . . . . . 18
| |
| 25 | 24 | breq1d 4064 |
. . . . . . . . . . . . . . . . 17
|
| 26 | 25 | imbrov2fvoveq 5987 |
. . . . . . . . . . . . . . . 16
|
| 27 | 26 | rspcv 2877 |
. . . . . . . . . . . . . . 15
|
| 28 | 23, 27 | syl 14 |
. . . . . . . . . . . . . 14
|
| 29 | fvco3 5668 |
. . . . . . . . . . . . . . . . . . 19
| |
| 30 | 21, 22, 29 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
|
| 31 | 17 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
|
| 32 | fvco3 5668 |
. . . . . . . . . . . . . . . . . . 19
| |
| 33 | 21, 31, 32 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 30, 33 | oveq12d 5980 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | fveq2d 5598 |
. . . . . . . . . . . . . . . 16
|
| 36 | 35 | breq1d 4064 |
. . . . . . . . . . . . . . 15
|
| 37 | 36 | imbi2d 230 |
. . . . . . . . . . . . . 14
|
| 38 | 28, 37 | sylibrd 169 |
. . . . . . . . . . . . 13
|
| 39 | 38 | imp 124 |
. . . . . . . . . . . 12
|
| 40 | 39 | an32s 568 |
. . . . . . . . . . 11
|
| 41 | 40 | imim2d 54 |
. . . . . . . . . 10
|
| 42 | 41 | anassrs 400 |
. . . . . . . . 9
|
| 43 | 42 | ralimdva 2574 |
. . . . . . . 8
|
| 44 | 43 | reximdva 2609 |
. . . . . . 7
|
| 45 | 44 | ex 115 |
. . . . . 6
|
| 46 | 20, 45 | mpid 42 |
. . . . 5
|
| 47 | 46 | rexlimdva 2624 |
. . . 4
|
| 48 | 15, 47 | mpd 13 |
. . 3
|
| 49 | 48 | ralrimivva 2589 |
. 2
|
| 50 | cncfrss 15132 |
. . . 4
| |
| 51 | 4, 50 | syl 14 |
. . 3
|
| 52 | cncfrss2 15133 |
. . . 4
| |
| 53 | 1, 52 | syl 14 |
. . 3
|
| 54 | elcncf2 15131 |
. . 3
| |
| 55 | 51, 53, 54 | syl2anc 411 |
. 2
|
| 56 | 8, 49, 55 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-map 6755 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-2 9125 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-cncf 15128 |
| This theorem is referenced by: cncfmpt1f 15155 cdivcncfap 15161 negfcncf 15163 divcncfap 15171 sincn 15326 coscn 15327 |
| Copyright terms: Public domain | W3C validator |