| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfco | Unicode version | ||
| Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfco.4 |
|
| cncfco.5 |
|
| Ref | Expression |
|---|---|
| cncfco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfco.5 |
. . . 4
| |
| 2 | cncff 14991 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | cncfco.4 |
. . . 4
| |
| 5 | cncff 14991 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fco 5440 |
. . 3
| |
| 8 | 3, 6, 7 | syl2anc 411 |
. 2
|
| 9 | 1 | adantr 276 |
. . . . 5
|
| 10 | 6 | adantr 276 |
. . . . . 6
|
| 11 | simprl 529 |
. . . . . 6
| |
| 12 | 10, 11 | ffvelcdmd 5715 |
. . . . 5
|
| 13 | simprr 531 |
. . . . 5
| |
| 14 | cncfi 14992 |
. . . . 5
| |
| 15 | 9, 12, 13, 14 | syl3anc 1249 |
. . . 4
|
| 16 | 4 | ad2antrr 488 |
. . . . . . 7
|
| 17 | simplrl 535 |
. . . . . . 7
| |
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | cncfi 14992 |
. . . . . . 7
| |
| 20 | 16, 17, 18, 19 | syl3anc 1249 |
. . . . . 6
|
| 21 | 6 | ad3antrrr 492 |
. . . . . . . . . . . . . . . 16
|
| 22 | simprr 531 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 21, 22 | ffvelcdmd 5715 |
. . . . . . . . . . . . . . 15
|
| 24 | fvoveq1 5966 |
. . . . . . . . . . . . . . . . . 18
| |
| 25 | 24 | breq1d 4053 |
. . . . . . . . . . . . . . . . 17
|
| 26 | 25 | imbrov2fvoveq 5968 |
. . . . . . . . . . . . . . . 16
|
| 27 | 26 | rspcv 2872 |
. . . . . . . . . . . . . . 15
|
| 28 | 23, 27 | syl 14 |
. . . . . . . . . . . . . 14
|
| 29 | fvco3 5649 |
. . . . . . . . . . . . . . . . . . 19
| |
| 30 | 21, 22, 29 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
|
| 31 | 17 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
|
| 32 | fvco3 5649 |
. . . . . . . . . . . . . . . . . . 19
| |
| 33 | 21, 31, 32 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 30, 33 | oveq12d 5961 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | fveq2d 5579 |
. . . . . . . . . . . . . . . 16
|
| 36 | 35 | breq1d 4053 |
. . . . . . . . . . . . . . 15
|
| 37 | 36 | imbi2d 230 |
. . . . . . . . . . . . . 14
|
| 38 | 28, 37 | sylibrd 169 |
. . . . . . . . . . . . 13
|
| 39 | 38 | imp 124 |
. . . . . . . . . . . 12
|
| 40 | 39 | an32s 568 |
. . . . . . . . . . 11
|
| 41 | 40 | imim2d 54 |
. . . . . . . . . 10
|
| 42 | 41 | anassrs 400 |
. . . . . . . . 9
|
| 43 | 42 | ralimdva 2572 |
. . . . . . . 8
|
| 44 | 43 | reximdva 2607 |
. . . . . . 7
|
| 45 | 44 | ex 115 |
. . . . . 6
|
| 46 | 20, 45 | mpid 42 |
. . . . 5
|
| 47 | 46 | rexlimdva 2622 |
. . . 4
|
| 48 | 15, 47 | mpd 13 |
. . 3
|
| 49 | 48 | ralrimivva 2587 |
. 2
|
| 50 | cncfrss 14989 |
. . . 4
| |
| 51 | 4, 50 | syl 14 |
. . 3
|
| 52 | cncfrss2 14990 |
. . . 4
| |
| 53 | 1, 52 | syl 14 |
. . 3
|
| 54 | elcncf2 14988 |
. . 3
| |
| 55 | 51, 53, 54 | syl2anc 411 |
. 2
|
| 56 | 8, 49, 55 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-map 6736 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-2 9094 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-cncf 14985 |
| This theorem is referenced by: cncfmpt1f 15012 cdivcncfap 15018 negfcncf 15020 divcncfap 15028 sincn 15183 coscn 15184 |
| Copyright terms: Public domain | W3C validator |