ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfco Unicode version

Theorem cncfco 12359
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
cncfco.5  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
Assertion
Ref Expression
cncfco  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )

Proof of Theorem cncfco
Dummy variables  w  u  x  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
2 cncff 12345 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  G : B
--> C )
31, 2syl 14 . . 3  |-  ( ph  ->  G : B --> C )
4 cncfco.4 . . . 4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 12345 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 14 . . 3  |-  ( ph  ->  F : A --> B )
7 fco 5211 . . 3  |-  ( ( G : B --> C  /\  F : A --> B )  ->  ( G  o.  F ) : A --> C )
83, 6, 7syl2anc 404 . 2  |-  ( ph  ->  ( G  o.  F
) : A --> C )
91adantr 271 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  G  e.  ( B -cn-> C ) )
106adantr 271 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  F : A --> B )
11 simprl 499 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  x  e.  A )
1210, 11ffvelrnd 5474 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( F `  x
)  e.  B )
13 simprr 500 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
y  e.  RR+ )
14 cncfi 12346 . . . . 5  |-  ( ( G  e.  ( B
-cn-> C )  /\  ( F `  x )  e.  B  /\  y  e.  RR+ )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
159, 12, 13, 14syl3anc 1181 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
164ad2antrr 473 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  F  e.  ( A -cn-> B ) )
17 simplrl 503 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  x  e.  A
)
18 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  u  e.  RR+ )
19 cncfi 12346 . . . . . . 7  |-  ( ( F  e.  ( A
-cn-> B )  /\  x  e.  A  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
2016, 17, 18, 19syl3anc 1181 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
216ad3antrrr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  F : A --> B )
22 simprr 500 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  w  e.  A )
2321, 22ffvelrnd 5474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( F `  w
)  e.  B )
24 fvoveq1 5713 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( F `  w )  ->  ( abs `  ( v  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
2524breq1d 3877 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( F `  w )  ->  (
( abs `  (
v  -  ( F `
 x ) ) )  <  u  <->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
) )
2625imbrov2fvoveq 5715 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( F `  w )  ->  (
( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
2726rspcv 2732 . . . . . . . . . . . . . . 15  |-  ( ( F `  w )  e.  B  ->  ( A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
29 fvco3 5410 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  w  e.  A )  ->  ( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3021, 22, 29syl2anc 404 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3117adantr 271 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  x  e.  A )
32 fvco3 5410 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
3321, 31, 32syl2anc 404 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
3430, 33oveq12d 5708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
)  =  ( ( G `  ( F `
 w ) )  -  ( G `  ( F `  x ) ) ) )
3534fveq2d 5344 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  =  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) ) )
3635breq1d 3877 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y  <->  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
3736imbi2d 229 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
3828, 37sylibrd 168 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
3938imp 123 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4039an32s 536 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4140imim2d 54 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4241anassrs 393 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  /\  w  e.  A )  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4342ralimdva 2453 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  ->  ( A. w  e.  A  (
( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4443reximdva 2487 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
)  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4544ex 114 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
4620, 45mpid 42 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4746rexlimdva 2502 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( E. u  e.  RR+  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4815, 47mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
) )  <  y
) )
4948ralrimivva 2467 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
50 cncfrss 12343 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
514, 50syl 14 . . 3  |-  ( ph  ->  A  C_  CC )
52 cncfrss2 12344 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  C  C_  CC )
531, 52syl 14 . . 3  |-  ( ph  ->  C  C_  CC )
54 elcncf2 12342 . . 3  |-  ( ( A  C_  CC  /\  C  C_  CC )  ->  (
( G  o.  F
)  e.  ( A
-cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
5551, 53, 54syl2anc 404 . 2  |-  ( ph  ->  ( ( G  o.  F )  e.  ( A -cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
568, 49, 55mpbir2and 893 1  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445   A.wral 2370   E.wrex 2371    C_ wss 3013   class class class wbr 3867    o. ccom 4471   -->wf 5045   ` cfv 5049  (class class class)co 5690   CCcc 7445    < clt 7619    - cmin 7750   RR+crp 9233   abscabs 10561   -cn->ccncf 12338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-map 6447  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-2 8579  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563  df-cncf 12339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator