| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfco | Unicode version | ||
| Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfco.4 |
|
| cncfco.5 |
|
| Ref | Expression |
|---|---|
| cncfco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfco.5 |
. . . 4
| |
| 2 | cncff 14813 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | cncfco.4 |
. . . 4
| |
| 5 | cncff 14813 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fco 5423 |
. . 3
| |
| 8 | 3, 6, 7 | syl2anc 411 |
. 2
|
| 9 | 1 | adantr 276 |
. . . . 5
|
| 10 | 6 | adantr 276 |
. . . . . 6
|
| 11 | simprl 529 |
. . . . . 6
| |
| 12 | 10, 11 | ffvelcdmd 5698 |
. . . . 5
|
| 13 | simprr 531 |
. . . . 5
| |
| 14 | cncfi 14814 |
. . . . 5
| |
| 15 | 9, 12, 13, 14 | syl3anc 1249 |
. . . 4
|
| 16 | 4 | ad2antrr 488 |
. . . . . . 7
|
| 17 | simplrl 535 |
. . . . . . 7
| |
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | cncfi 14814 |
. . . . . . 7
| |
| 20 | 16, 17, 18, 19 | syl3anc 1249 |
. . . . . 6
|
| 21 | 6 | ad3antrrr 492 |
. . . . . . . . . . . . . . . 16
|
| 22 | simprr 531 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 21, 22 | ffvelcdmd 5698 |
. . . . . . . . . . . . . . 15
|
| 24 | fvoveq1 5945 |
. . . . . . . . . . . . . . . . . 18
| |
| 25 | 24 | breq1d 4043 |
. . . . . . . . . . . . . . . . 17
|
| 26 | 25 | imbrov2fvoveq 5947 |
. . . . . . . . . . . . . . . 16
|
| 27 | 26 | rspcv 2864 |
. . . . . . . . . . . . . . 15
|
| 28 | 23, 27 | syl 14 |
. . . . . . . . . . . . . 14
|
| 29 | fvco3 5632 |
. . . . . . . . . . . . . . . . . . 19
| |
| 30 | 21, 22, 29 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
|
| 31 | 17 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
|
| 32 | fvco3 5632 |
. . . . . . . . . . . . . . . . . . 19
| |
| 33 | 21, 31, 32 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 30, 33 | oveq12d 5940 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | fveq2d 5562 |
. . . . . . . . . . . . . . . 16
|
| 36 | 35 | breq1d 4043 |
. . . . . . . . . . . . . . 15
|
| 37 | 36 | imbi2d 230 |
. . . . . . . . . . . . . 14
|
| 38 | 28, 37 | sylibrd 169 |
. . . . . . . . . . . . 13
|
| 39 | 38 | imp 124 |
. . . . . . . . . . . 12
|
| 40 | 39 | an32s 568 |
. . . . . . . . . . 11
|
| 41 | 40 | imim2d 54 |
. . . . . . . . . 10
|
| 42 | 41 | anassrs 400 |
. . . . . . . . 9
|
| 43 | 42 | ralimdva 2564 |
. . . . . . . 8
|
| 44 | 43 | reximdva 2599 |
. . . . . . 7
|
| 45 | 44 | ex 115 |
. . . . . 6
|
| 46 | 20, 45 | mpid 42 |
. . . . 5
|
| 47 | 46 | rexlimdva 2614 |
. . . 4
|
| 48 | 15, 47 | mpd 13 |
. . 3
|
| 49 | 48 | ralrimivva 2579 |
. 2
|
| 50 | cncfrss 14811 |
. . . 4
| |
| 51 | 4, 50 | syl 14 |
. . 3
|
| 52 | cncfrss2 14812 |
. . . 4
| |
| 53 | 1, 52 | syl 14 |
. . 3
|
| 54 | elcncf2 14810 |
. . 3
| |
| 55 | 51, 53, 54 | syl2anc 411 |
. 2
|
| 56 | 8, 49, 55 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-2 9049 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-cncf 14807 |
| This theorem is referenced by: cncfmpt1f 14834 cdivcncfap 14840 negfcncf 14842 divcncfap 14850 sincn 15005 coscn 15006 |
| Copyright terms: Public domain | W3C validator |