ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfco Unicode version

Theorem cncfco 14746
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
cncfco.5  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
Assertion
Ref Expression
cncfco  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )

Proof of Theorem cncfco
Dummy variables  w  u  x  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
2 cncff 14732 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  G : B
--> C )
31, 2syl 14 . . 3  |-  ( ph  ->  G : B --> C )
4 cncfco.4 . . . 4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 14732 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 14 . . 3  |-  ( ph  ->  F : A --> B )
7 fco 5419 . . 3  |-  ( ( G : B --> C  /\  F : A --> B )  ->  ( G  o.  F ) : A --> C )
83, 6, 7syl2anc 411 . 2  |-  ( ph  ->  ( G  o.  F
) : A --> C )
91adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  G  e.  ( B -cn-> C ) )
106adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  F : A --> B )
11 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  x  e.  A )
1210, 11ffvelcdmd 5694 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( F `  x
)  e.  B )
13 simprr 531 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
y  e.  RR+ )
14 cncfi 14733 . . . . 5  |-  ( ( G  e.  ( B
-cn-> C )  /\  ( F `  x )  e.  B  /\  y  e.  RR+ )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
159, 12, 13, 14syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
164ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  F  e.  ( A -cn-> B ) )
17 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  x  e.  A
)
18 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  u  e.  RR+ )
19 cncfi 14733 . . . . . . 7  |-  ( ( F  e.  ( A
-cn-> B )  /\  x  e.  A  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
2016, 17, 18, 19syl3anc 1249 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
216ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  F : A --> B )
22 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  w  e.  A )
2321, 22ffvelcdmd 5694 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( F `  w
)  e.  B )
24 fvoveq1 5941 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( F `  w )  ->  ( abs `  ( v  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
2524breq1d 4039 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( F `  w )  ->  (
( abs `  (
v  -  ( F `
 x ) ) )  <  u  <->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
) )
2625imbrov2fvoveq 5943 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( F `  w )  ->  (
( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
2726rspcv 2860 . . . . . . . . . . . . . . 15  |-  ( ( F `  w )  e.  B  ->  ( A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
29 fvco3 5628 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  w  e.  A )  ->  ( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3021, 22, 29syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3117adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  x  e.  A )
32 fvco3 5628 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
3321, 31, 32syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
3430, 33oveq12d 5936 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
)  =  ( ( G `  ( F `
 w ) )  -  ( G `  ( F `  x ) ) ) )
3534fveq2d 5558 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  =  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) ) )
3635breq1d 4039 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y  <->  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
3736imbi2d 230 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
3828, 37sylibrd 169 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
3938imp 124 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4039an32s 568 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4140imim2d 54 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4241anassrs 400 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  /\  w  e.  A )  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4342ralimdva 2561 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  ->  ( A. w  e.  A  (
( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4443reximdva 2596 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
)  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4544ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
4620, 45mpid 42 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4746rexlimdva 2611 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( E. u  e.  RR+  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4815, 47mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
) )  <  y
) )
4948ralrimivva 2576 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
50 cncfrss 14730 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
514, 50syl 14 . . 3  |-  ( ph  ->  A  C_  CC )
52 cncfrss2 14731 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  C  C_  CC )
531, 52syl 14 . . 3  |-  ( ph  ->  C  C_  CC )
54 elcncf2 14729 . . 3  |-  ( ( A  C_  CC  /\  C  C_  CC )  ->  (
( G  o.  F
)  e.  ( A
-cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
5551, 53, 54syl2anc 411 . 2  |-  ( ph  ->  ( ( G  o.  F )  e.  ( A -cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
568, 49, 55mpbir2and 946 1  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   class class class wbr 4029    o. ccom 4663   -->wf 5250   ` cfv 5254  (class class class)co 5918   CCcc 7870    < clt 8054    - cmin 8190   RR+crp 9719   abscabs 11141   -cn->ccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-cncf 14726
This theorem is referenced by:  cncfmpt1f  14752  cdivcncfap  14758  negfcncf  14760  divcncfap  14768  sincn  14904  coscn  14905
  Copyright terms: Public domain W3C validator