Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncfco | Unicode version |
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfco.4 | |
cncfco.5 |
Ref | Expression |
---|---|
cncfco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfco.5 | . . . 4 | |
2 | cncff 12975 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | cncfco.4 | . . . 4 | |
5 | cncff 12975 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | fco 5335 | . . 3 | |
8 | 3, 6, 7 | syl2anc 409 | . 2 |
9 | 1 | adantr 274 | . . . . 5 |
10 | 6 | adantr 274 | . . . . . 6 |
11 | simprl 521 | . . . . . 6 | |
12 | 10, 11 | ffvelrnd 5603 | . . . . 5 |
13 | simprr 522 | . . . . 5 | |
14 | cncfi 12976 | . . . . 5 | |
15 | 9, 12, 13, 14 | syl3anc 1220 | . . . 4 |
16 | 4 | ad2antrr 480 | . . . . . . 7 |
17 | simplrl 525 | . . . . . . 7 | |
18 | simpr 109 | . . . . . . 7 | |
19 | cncfi 12976 | . . . . . . 7 | |
20 | 16, 17, 18, 19 | syl3anc 1220 | . . . . . 6 |
21 | 6 | ad3antrrr 484 | . . . . . . . . . . . . . . . 16 |
22 | simprr 522 | . . . . . . . . . . . . . . . 16 | |
23 | 21, 22 | ffvelrnd 5603 | . . . . . . . . . . . . . . 15 |
24 | fvoveq1 5847 | . . . . . . . . . . . . . . . . . 18 | |
25 | 24 | breq1d 3975 | . . . . . . . . . . . . . . . . 17 |
26 | 25 | imbrov2fvoveq 5849 | . . . . . . . . . . . . . . . 16 |
27 | 26 | rspcv 2812 | . . . . . . . . . . . . . . 15 |
28 | 23, 27 | syl 14 | . . . . . . . . . . . . . 14 |
29 | fvco3 5539 | . . . . . . . . . . . . . . . . . . 19 | |
30 | 21, 22, 29 | syl2anc 409 | . . . . . . . . . . . . . . . . . 18 |
31 | 17 | adantr 274 | . . . . . . . . . . . . . . . . . . 19 |
32 | fvco3 5539 | . . . . . . . . . . . . . . . . . . 19 | |
33 | 21, 31, 32 | syl2anc 409 | . . . . . . . . . . . . . . . . . 18 |
34 | 30, 33 | oveq12d 5842 | . . . . . . . . . . . . . . . . 17 |
35 | 34 | fveq2d 5472 | . . . . . . . . . . . . . . . 16 |
36 | 35 | breq1d 3975 | . . . . . . . . . . . . . . 15 |
37 | 36 | imbi2d 229 | . . . . . . . . . . . . . 14 |
38 | 28, 37 | sylibrd 168 | . . . . . . . . . . . . 13 |
39 | 38 | imp 123 | . . . . . . . . . . . 12 |
40 | 39 | an32s 558 | . . . . . . . . . . 11 |
41 | 40 | imim2d 54 | . . . . . . . . . 10 |
42 | 41 | anassrs 398 | . . . . . . . . 9 |
43 | 42 | ralimdva 2524 | . . . . . . . 8 |
44 | 43 | reximdva 2559 | . . . . . . 7 |
45 | 44 | ex 114 | . . . . . 6 |
46 | 20, 45 | mpid 42 | . . . . 5 |
47 | 46 | rexlimdva 2574 | . . . 4 |
48 | 15, 47 | mpd 13 | . . 3 |
49 | 48 | ralrimivva 2539 | . 2 |
50 | cncfrss 12973 | . . . 4 | |
51 | 4, 50 | syl 14 | . . 3 |
52 | cncfrss2 12974 | . . . 4 | |
53 | 1, 52 | syl 14 | . . 3 |
54 | elcncf2 12972 | . . 3 | |
55 | 51, 53, 54 | syl2anc 409 | . 2 |
56 | 8, 49, 55 | mpbir2and 929 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 wrex 2436 wss 3102 class class class wbr 3965 ccom 4590 wf 5166 cfv 5170 (class class class)co 5824 cc 7730 clt 7912 cmin 8046 crp 9560 cabs 10897 ccncf 12968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-po 4256 df-iso 4257 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-map 6595 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-2 8892 df-cj 10742 df-re 10743 df-im 10744 df-rsqrt 10898 df-abs 10899 df-cncf 12969 |
This theorem is referenced by: cncfmpt1f 12995 cdivcncfap 12998 negfcncf 13000 sincn 13101 coscn 13102 |
Copyright terms: Public domain | W3C validator |