| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfco | Unicode version | ||
| Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfco.4 |
|
| cncfco.5 |
|
| Ref | Expression |
|---|---|
| cncfco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfco.5 |
. . . 4
| |
| 2 | cncff 15245 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | cncfco.4 |
. . . 4
| |
| 5 | cncff 15245 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fco 5488 |
. . 3
| |
| 8 | 3, 6, 7 | syl2anc 411 |
. 2
|
| 9 | 1 | adantr 276 |
. . . . 5
|
| 10 | 6 | adantr 276 |
. . . . . 6
|
| 11 | simprl 529 |
. . . . . 6
| |
| 12 | 10, 11 | ffvelcdmd 5770 |
. . . . 5
|
| 13 | simprr 531 |
. . . . 5
| |
| 14 | cncfi 15246 |
. . . . 5
| |
| 15 | 9, 12, 13, 14 | syl3anc 1271 |
. . . 4
|
| 16 | 4 | ad2antrr 488 |
. . . . . . 7
|
| 17 | simplrl 535 |
. . . . . . 7
| |
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | cncfi 15246 |
. . . . . . 7
| |
| 20 | 16, 17, 18, 19 | syl3anc 1271 |
. . . . . 6
|
| 21 | 6 | ad3antrrr 492 |
. . . . . . . . . . . . . . . 16
|
| 22 | simprr 531 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 21, 22 | ffvelcdmd 5770 |
. . . . . . . . . . . . . . 15
|
| 24 | fvoveq1 6023 |
. . . . . . . . . . . . . . . . . 18
| |
| 25 | 24 | breq1d 4092 |
. . . . . . . . . . . . . . . . 17
|
| 26 | 25 | imbrov2fvoveq 6025 |
. . . . . . . . . . . . . . . 16
|
| 27 | 26 | rspcv 2903 |
. . . . . . . . . . . . . . 15
|
| 28 | 23, 27 | syl 14 |
. . . . . . . . . . . . . 14
|
| 29 | fvco3 5704 |
. . . . . . . . . . . . . . . . . . 19
| |
| 30 | 21, 22, 29 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
|
| 31 | 17 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
|
| 32 | fvco3 5704 |
. . . . . . . . . . . . . . . . . . 19
| |
| 33 | 21, 31, 32 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 30, 33 | oveq12d 6018 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | fveq2d 5630 |
. . . . . . . . . . . . . . . 16
|
| 36 | 35 | breq1d 4092 |
. . . . . . . . . . . . . . 15
|
| 37 | 36 | imbi2d 230 |
. . . . . . . . . . . . . 14
|
| 38 | 28, 37 | sylibrd 169 |
. . . . . . . . . . . . 13
|
| 39 | 38 | imp 124 |
. . . . . . . . . . . 12
|
| 40 | 39 | an32s 568 |
. . . . . . . . . . 11
|
| 41 | 40 | imim2d 54 |
. . . . . . . . . 10
|
| 42 | 41 | anassrs 400 |
. . . . . . . . 9
|
| 43 | 42 | ralimdva 2597 |
. . . . . . . 8
|
| 44 | 43 | reximdva 2632 |
. . . . . . 7
|
| 45 | 44 | ex 115 |
. . . . . 6
|
| 46 | 20, 45 | mpid 42 |
. . . . 5
|
| 47 | 46 | rexlimdva 2648 |
. . . 4
|
| 48 | 15, 47 | mpd 13 |
. . 3
|
| 49 | 48 | ralrimivva 2612 |
. 2
|
| 50 | cncfrss 15243 |
. . . 4
| |
| 51 | 4, 50 | syl 14 |
. . 3
|
| 52 | cncfrss2 15244 |
. . . 4
| |
| 53 | 1, 52 | syl 14 |
. . 3
|
| 54 | elcncf2 15242 |
. . 3
| |
| 55 | 51, 53, 54 | syl2anc 411 |
. 2
|
| 56 | 8, 49, 55 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-2 9165 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-cncf 15239 |
| This theorem is referenced by: cncfmpt1f 15266 cdivcncfap 15272 negfcncf 15274 divcncfap 15282 sincn 15437 coscn 15438 |
| Copyright terms: Public domain | W3C validator |