ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfco Unicode version

Theorem cncfco 12989
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
cncfco.5  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
Assertion
Ref Expression
cncfco  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )

Proof of Theorem cncfco
Dummy variables  w  u  x  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
2 cncff 12975 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  G : B
--> C )
31, 2syl 14 . . 3  |-  ( ph  ->  G : B --> C )
4 cncfco.4 . . . 4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 12975 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 14 . . 3  |-  ( ph  ->  F : A --> B )
7 fco 5335 . . 3  |-  ( ( G : B --> C  /\  F : A --> B )  ->  ( G  o.  F ) : A --> C )
83, 6, 7syl2anc 409 . 2  |-  ( ph  ->  ( G  o.  F
) : A --> C )
91adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  G  e.  ( B -cn-> C ) )
106adantr 274 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  F : A --> B )
11 simprl 521 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  x  e.  A )
1210, 11ffvelrnd 5603 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( F `  x
)  e.  B )
13 simprr 522 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
y  e.  RR+ )
14 cncfi 12976 . . . . 5  |-  ( ( G  e.  ( B
-cn-> C )  /\  ( F `  x )  e.  B  /\  y  e.  RR+ )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
159, 12, 13, 14syl3anc 1220 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
164ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  F  e.  ( A -cn-> B ) )
17 simplrl 525 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  x  e.  A
)
18 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  u  e.  RR+ )
19 cncfi 12976 . . . . . . 7  |-  ( ( F  e.  ( A
-cn-> B )  /\  x  e.  A  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
2016, 17, 18, 19syl3anc 1220 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
216ad3antrrr 484 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  F : A --> B )
22 simprr 522 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  w  e.  A )
2321, 22ffvelrnd 5603 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( F `  w
)  e.  B )
24 fvoveq1 5847 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( F `  w )  ->  ( abs `  ( v  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
2524breq1d 3975 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( F `  w )  ->  (
( abs `  (
v  -  ( F `
 x ) ) )  <  u  <->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
) )
2625imbrov2fvoveq 5849 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( F `  w )  ->  (
( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
2726rspcv 2812 . . . . . . . . . . . . . . 15  |-  ( ( F `  w )  e.  B  ->  ( A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
2823, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
29 fvco3 5539 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  w  e.  A )  ->  ( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3021, 22, 29syl2anc 409 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3117adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  x  e.  A )
32 fvco3 5539 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
3321, 31, 32syl2anc 409 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
3430, 33oveq12d 5842 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
)  =  ( ( G `  ( F `
 w ) )  -  ( G `  ( F `  x ) ) ) )
3534fveq2d 5472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  =  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) ) )
3635breq1d 3975 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y  <->  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
3736imbi2d 229 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
3828, 37sylibrd 168 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
3938imp 123 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4039an32s 558 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4140imim2d 54 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4241anassrs 398 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  /\  w  e.  A )  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4342ralimdva 2524 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  ->  ( A. w  e.  A  (
( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4443reximdva 2559 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
)  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4544ex 114 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
4620, 45mpid 42 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4746rexlimdva 2574 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( E. u  e.  RR+  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4815, 47mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
) )  <  y
) )
4948ralrimivva 2539 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
50 cncfrss 12973 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
514, 50syl 14 . . 3  |-  ( ph  ->  A  C_  CC )
52 cncfrss2 12974 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  C  C_  CC )
531, 52syl 14 . . 3  |-  ( ph  ->  C  C_  CC )
54 elcncf2 12972 . . 3  |-  ( ( A  C_  CC  /\  C  C_  CC )  ->  (
( G  o.  F
)  e.  ( A
-cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
5551, 53, 54syl2anc 409 . 2  |-  ( ph  ->  ( ( G  o.  F )  e.  ( A -cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
568, 49, 55mpbir2and 929 1  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436    C_ wss 3102   class class class wbr 3965    o. ccom 4590   -->wf 5166   ` cfv 5170  (class class class)co 5824   CCcc 7730    < clt 7912    - cmin 8046   RR+crp 9560   abscabs 10897   -cn->ccncf 12968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-map 6595  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-2 8892  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-cncf 12969
This theorem is referenced by:  cncfmpt1f  12995  cdivcncfap  12998  negfcncf  13000  sincn  13101  coscn  13102
  Copyright terms: Public domain W3C validator