ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsgcd Unicode version

Theorem dvdsgcd 11996
Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
dvdsgcd  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  gcd  N ) ) )

Proof of Theorem dvdsgcd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezout 11995 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
213adant1 1015 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
3 dvds2ln 11815 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( x  x.  M
)  +  ( y  x.  N ) ) ) )
433impia 1200 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  ||  ( ( x  x.  M )  +  ( y  x.  N
) ) )
543coml 1210 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  ||  ( ( x  x.  M )  +  ( y  x.  N
) ) )
6 simp3l 1025 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  ZZ )
7 simp12 1028 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  M  e.  ZZ )
8 zcn 9247 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9247 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
10 mulcom 7931 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( x  x.  M
)  =  ( M  x.  x ) )
118, 9, 10syl2an 289 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  x.  M
)  =  ( M  x.  x ) )
126, 7, 11syl2anc 411 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  x.  M
)  =  ( M  x.  x ) )
13 simp3r 1026 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
y  e.  ZZ )
14 simp13 1029 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  N  e.  ZZ )
15 zcn 9247 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  CC )
16 zcn 9247 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
17 mulcom 7931 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  N  e.  CC )  ->  ( y  x.  N
)  =  ( N  x.  y ) )
1815, 16, 17syl2an 289 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( y  x.  N
)  =  ( N  x.  y ) )
1913, 14, 18syl2anc 411 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( y  x.  N
)  =  ( N  x.  y ) )
2012, 19oveq12d 5887 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  x.  M )  +  ( y  x.  N ) )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
215, 20breqtrd 4026 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  ||  ( ( M  x.  x )  +  ( N  x.  y
) ) )
22 breq2 4004 . . . . . 6  |-  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) )  ->  ( K  ||  ( M  gcd  N )  <->  K  ||  ( ( M  x.  x )  +  ( N  x.  y ) ) ) )
2321, 22syl5ibrcom 157 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) )
24233expia 1205 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  ( (
x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) ) )
2524rexlimdvv 2601 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) )
2625ex 115 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) ) )
272, 26mpid 42 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4000  (class class class)co 5869   CCcc 7800    + caddc 7805    x. cmul 7807   ZZcz 9242    || cdvds 11778    gcd cgcd 11926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by:  dvdsgcdb  11997  dfgcd2  11998  mulgcd  12000  ncoprmgcdne1b  12072  mulgcddvds  12077  rpmulgcd2  12078  rpexp  12136  pythagtriplem4  12251  pcgcd1  12310  pockthlem  12337  lgsne0  14106
  Copyright terms: Public domain W3C validator