ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsgcd Unicode version

Theorem dvdsgcd 12519
Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
dvdsgcd  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  gcd  N ) ) )

Proof of Theorem dvdsgcd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezout 12518 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
213adant1 1039 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
3 dvds2ln 12321 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( x  x.  M
)  +  ( y  x.  N ) ) ) )
433impia 1224 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  ||  ( ( x  x.  M )  +  ( y  x.  N
) ) )
543coml 1234 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  ||  ( ( x  x.  M )  +  ( y  x.  N
) ) )
6 simp3l 1049 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  ZZ )
7 simp12 1052 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  M  e.  ZZ )
8 zcn 9439 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9439 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
10 mulcom 8116 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( x  x.  M
)  =  ( M  x.  x ) )
118, 9, 10syl2an 289 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  x.  M
)  =  ( M  x.  x ) )
126, 7, 11syl2anc 411 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  x.  M
)  =  ( M  x.  x ) )
13 simp3r 1050 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
y  e.  ZZ )
14 simp13 1053 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  N  e.  ZZ )
15 zcn 9439 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  CC )
16 zcn 9439 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
17 mulcom 8116 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  N  e.  CC )  ->  ( y  x.  N
)  =  ( N  x.  y ) )
1815, 16, 17syl2an 289 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( y  x.  N
)  =  ( N  x.  y ) )
1913, 14, 18syl2anc 411 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( y  x.  N
)  =  ( N  x.  y ) )
2012, 19oveq12d 6012 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  x.  M )  +  ( y  x.  N ) )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
215, 20breqtrd 4108 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  ||  ( ( M  x.  x )  +  ( N  x.  y
) ) )
22 breq2 4086 . . . . . 6  |-  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) )  ->  ( K  ||  ( M  gcd  N )  <->  K  ||  ( ( M  x.  x )  +  ( N  x.  y ) ) ) )
2321, 22syl5ibrcom 157 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) )
24233expia 1229 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  ( (
x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) ) )
2524rexlimdvv 2655 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) )
2625ex 115 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) ) )
272, 26mpid 42 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 5994   CCcc 7985    + caddc 7990    x. cmul 7992   ZZcz 9434    || cdvds 12284    gcd cgcd 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461
This theorem is referenced by:  dvdsgcdb  12520  dfgcd2  12521  mulgcd  12523  ncoprmgcdne1b  12597  mulgcddvds  12602  rpmulgcd2  12603  rpexp  12661  pythagtriplem4  12777  pcgcd1  12837  pockthlem  12865  lgsne0  15702  lgsquad2lem2  15746
  Copyright terms: Public domain W3C validator