ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsgcd Unicode version

Theorem dvdsgcd 12027
Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
dvdsgcd  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  gcd  N ) ) )

Proof of Theorem dvdsgcd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezout 12026 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
213adant1 1016 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
3 dvds2ln 11845 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  ||  (
( x  x.  M
)  +  ( y  x.  N ) ) ) )
433impia 1201 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  ||  ( ( x  x.  M )  +  ( y  x.  N
) ) )
543coml 1211 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  ||  ( ( x  x.  M )  +  ( y  x.  N
) ) )
6 simp3l 1026 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  ZZ )
7 simp12 1029 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  M  e.  ZZ )
8 zcn 9272 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9272 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
10 mulcom 7954 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( x  x.  M
)  =  ( M  x.  x ) )
118, 9, 10syl2an 289 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  x.  M
)  =  ( M  x.  x ) )
126, 7, 11syl2anc 411 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  x.  M
)  =  ( M  x.  x ) )
13 simp3r 1027 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
y  e.  ZZ )
14 simp13 1030 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  N  e.  ZZ )
15 zcn 9272 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  CC )
16 zcn 9272 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
17 mulcom 7954 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  N  e.  CC )  ->  ( y  x.  N
)  =  ( N  x.  y ) )
1815, 16, 17syl2an 289 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( y  x.  N
)  =  ( N  x.  y ) )
1913, 14, 18syl2anc 411 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( y  x.  N
)  =  ( N  x.  y ) )
2012, 19oveq12d 5906 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  x.  M )  +  ( y  x.  N ) )  =  ( ( M  x.  x )  +  ( N  x.  y ) ) )
215, 20breqtrd 4041 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  K  ||  ( ( M  x.  x )  +  ( N  x.  y
) ) )
22 breq2 4019 . . . . . 6  |-  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y
) )  ->  ( K  ||  ( M  gcd  N )  <->  K  ||  ( ( M  x.  x )  +  ( N  x.  y ) ) ) )
2321, 22syl5ibrcom 157 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) )
24233expia 1206 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  ( (
x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) ) )
2524rexlimdvv 2611 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) )
2625ex 115 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( M  gcd  N )  =  ( ( M  x.  x )  +  ( N  x.  y ) )  ->  K  ||  ( M  gcd  N ) ) ) )
272, 26mpid 42 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158   E.wrex 2466   class class class wbr 4015  (class class class)co 5888   CCcc 7823    + caddc 7828    x. cmul 7830   ZZcz 9267    || cdvds 11808    gcd cgcd 11957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-sup 6997  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-fl 10284  df-mod 10337  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-dvds 11809  df-gcd 11958
This theorem is referenced by:  dvdsgcdb  12028  dfgcd2  12029  mulgcd  12031  ncoprmgcdne1b  12103  mulgcddvds  12108  rpmulgcd2  12109  rpexp  12167  pythagtriplem4  12282  pcgcd1  12341  pockthlem  12368  lgsne0  14735
  Copyright terms: Public domain W3C validator