ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrfvald Unicode version

Theorem dvrfvald 13480
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrfvald.b  |-  ( ph  ->  B  =  ( Base `  R ) )
dvrfvald.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
dvrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
dvrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
dvrfvald.d  |-  ( ph  -> 
./  =  (/r `  R
) )
dvrfvald.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
dvrfvald  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
Distinct variable groups:    x, y, B   
x, I, y    x, R, y    x,  .x. , y    x, U, y    ph, x, y
Allowed substitution hints:    ./ ( x, y)

Proof of Theorem dvrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-dvr 13479 . . 3  |- /r  =  (
r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) ) )
2 fveq2 5534 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 fveq2 5534 . . . 4  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
4 fveq2 5534 . . . . 5  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
5 eqidd 2190 . . . . 5  |-  ( r  =  R  ->  x  =  x )
6 fveq2 5534 . . . . . 6  |-  ( r  =  R  ->  ( invr `  r )  =  ( invr `  R
) )
76fveq1d 5536 . . . . 5  |-  ( r  =  R  ->  (
( invr `  r ) `  y )  =  ( ( invr `  R
) `  y )
)
84, 5, 7oveq123d 5916 . . . 4  |-  ( r  =  R  ->  (
x ( .r `  r ) ( (
invr `  r ) `  y ) )  =  ( x ( .r
`  R ) ( ( invr `  R
) `  y )
) )
92, 3, 8mpoeq123dv 5957 . . 3  |-  ( r  =  R  ->  (
x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) )  =  ( x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) ) )
10 dvrfvald.r . . . 4  |-  ( ph  ->  R  e. SRing )
1110elexd 2765 . . 3  |-  ( ph  ->  R  e.  _V )
12 basfn 12569 . . . . 5  |-  Base  Fn  _V
13 funfvex 5551 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5335 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1512, 11, 14sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  R
)  e.  _V )
16 eqidd 2190 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
17 eqidd 2190 . . . . . 6  |-  ( ph  ->  (Unit `  R )  =  (Unit `  R )
)
1816, 17, 10unitssd 13456 . . . . 5  |-  ( ph  ->  (Unit `  R )  C_  ( Base `  R
) )
1915, 18ssexd 4158 . . . 4  |-  ( ph  ->  (Unit `  R )  e.  _V )
20 mpoexga 6236 . . . 4  |-  ( ( ( Base `  R
)  e.  _V  /\  (Unit `  R )  e. 
_V )  ->  (
x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) )  e.  _V )
2115, 19, 20syl2anc 411 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  R ) ,  y  e.  (Unit `  R )  |->  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) )  e. 
_V )
221, 9, 11, 21fvmptd3 5629 . 2  |-  ( ph  ->  (/r `  R )  =  ( x  e.  (
Base `  R ) ,  y  e.  (Unit `  R )  |->  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) ) )
23 dvrfvald.d . 2  |-  ( ph  -> 
./  =  (/r `  R
) )
24 dvrfvald.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
25 dvrfvald.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
26 dvrfvald.t . . . 4  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
27 eqidd 2190 . . . 4  |-  ( ph  ->  x  =  x )
28 dvrfvald.i . . . . 5  |-  ( ph  ->  I  =  ( invr `  R ) )
2928fveq1d 5536 . . . 4  |-  ( ph  ->  ( I `  y
)  =  ( (
invr `  R ) `  y ) )
3026, 27, 29oveq123d 5916 . . 3  |-  ( ph  ->  ( x  .x.  (
I `  y )
)  =  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) )
3124, 25, 30mpoeq123dv 5957 . 2  |-  ( ph  ->  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )  =  ( x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) ) )
3222, 23, 313eqtr4d 2232 1  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   _Vcvv 2752    Fn wfn 5230   ` cfv 5235  (class class class)co 5895    e. cmpo 5897   Basecbs 12511   .rcmulr 12587  SRingcsrg 13314  Unitcui 13434   invrcinvr 13467  /rcdvr 13478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-mgp 13272  df-srg 13315  df-dvdsr 13436  df-unit 13437  df-dvr 13479
This theorem is referenced by:  dvrvald  13481
  Copyright terms: Public domain W3C validator