ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrfvald Unicode version

Theorem dvrfvald 14010
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrfvald.b  |-  ( ph  ->  B  =  ( Base `  R ) )
dvrfvald.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
dvrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
dvrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
dvrfvald.d  |-  ( ph  -> 
./  =  (/r `  R
) )
dvrfvald.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
dvrfvald  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
Distinct variable groups:    x, y, B   
x, I, y    x, R, y    x,  .x. , y    x, U, y    ph, x, y
Allowed substitution hints:    ./ ( x, y)

Proof of Theorem dvrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-dvr 14009 . . 3  |- /r  =  (
r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) ) )
2 fveq2 5599 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 fveq2 5599 . . . 4  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
4 fveq2 5599 . . . . 5  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
5 eqidd 2208 . . . . 5  |-  ( r  =  R  ->  x  =  x )
6 fveq2 5599 . . . . . 6  |-  ( r  =  R  ->  ( invr `  r )  =  ( invr `  R
) )
76fveq1d 5601 . . . . 5  |-  ( r  =  R  ->  (
( invr `  r ) `  y )  =  ( ( invr `  R
) `  y )
)
84, 5, 7oveq123d 5988 . . . 4  |-  ( r  =  R  ->  (
x ( .r `  r ) ( (
invr `  r ) `  y ) )  =  ( x ( .r
`  R ) ( ( invr `  R
) `  y )
) )
92, 3, 8mpoeq123dv 6030 . . 3  |-  ( r  =  R  ->  (
x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) )  =  ( x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) ) )
10 dvrfvald.r . . . 4  |-  ( ph  ->  R  e. SRing )
1110elexd 2790 . . 3  |-  ( ph  ->  R  e.  _V )
12 basfn 13005 . . . . 5  |-  Base  Fn  _V
13 funfvex 5616 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5395 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1512, 11, 14sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  R
)  e.  _V )
16 eqidd 2208 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
17 eqidd 2208 . . . . . 6  |-  ( ph  ->  (Unit `  R )  =  (Unit `  R )
)
1816, 17, 10unitssd 13986 . . . . 5  |-  ( ph  ->  (Unit `  R )  C_  ( Base `  R
) )
1915, 18ssexd 4200 . . . 4  |-  ( ph  ->  (Unit `  R )  e.  _V )
20 mpoexga 6321 . . . 4  |-  ( ( ( Base `  R
)  e.  _V  /\  (Unit `  R )  e. 
_V )  ->  (
x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) )  e.  _V )
2115, 19, 20syl2anc 411 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  R ) ,  y  e.  (Unit `  R )  |->  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) )  e. 
_V )
221, 9, 11, 21fvmptd3 5696 . 2  |-  ( ph  ->  (/r `  R )  =  ( x  e.  (
Base `  R ) ,  y  e.  (Unit `  R )  |->  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) ) )
23 dvrfvald.d . 2  |-  ( ph  -> 
./  =  (/r `  R
) )
24 dvrfvald.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
25 dvrfvald.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
26 dvrfvald.t . . . 4  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
27 eqidd 2208 . . . 4  |-  ( ph  ->  x  =  x )
28 dvrfvald.i . . . . 5  |-  ( ph  ->  I  =  ( invr `  R ) )
2928fveq1d 5601 . . . 4  |-  ( ph  ->  ( I `  y
)  =  ( (
invr `  R ) `  y ) )
3026, 27, 29oveq123d 5988 . . 3  |-  ( ph  ->  ( x  .x.  (
I `  y )
)  =  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) )
3124, 25, 30mpoeq123dv 6030 . 2  |-  ( ph  ->  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )  =  ( x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) ) )
3222, 23, 313eqtr4d 2250 1  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    Fn wfn 5285   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   Basecbs 12947   .rcmulr 13025  SRingcsrg 13840  Unitcui 13964   invrcinvr 13997  /rcdvr 14008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mgp 13798  df-srg 13841  df-dvdsr 13966  df-unit 13967  df-dvr 14009
This theorem is referenced by:  dvrvald  14011
  Copyright terms: Public domain W3C validator