ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrfvald Unicode version

Theorem dvrfvald 14091
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrfvald.b  |-  ( ph  ->  B  =  ( Base `  R ) )
dvrfvald.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
dvrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
dvrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
dvrfvald.d  |-  ( ph  -> 
./  =  (/r `  R
) )
dvrfvald.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
dvrfvald  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
Distinct variable groups:    x, y, B   
x, I, y    x, R, y    x,  .x. , y    x, U, y    ph, x, y
Allowed substitution hints:    ./ ( x, y)

Proof of Theorem dvrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-dvr 14090 . . 3  |- /r  =  (
r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) ) )
2 fveq2 5626 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 fveq2 5626 . . . 4  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
4 fveq2 5626 . . . . 5  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
5 eqidd 2230 . . . . 5  |-  ( r  =  R  ->  x  =  x )
6 fveq2 5626 . . . . . 6  |-  ( r  =  R  ->  ( invr `  r )  =  ( invr `  R
) )
76fveq1d 5628 . . . . 5  |-  ( r  =  R  ->  (
( invr `  r ) `  y )  =  ( ( invr `  R
) `  y )
)
84, 5, 7oveq123d 6021 . . . 4  |-  ( r  =  R  ->  (
x ( .r `  r ) ( (
invr `  r ) `  y ) )  =  ( x ( .r
`  R ) ( ( invr `  R
) `  y )
) )
92, 3, 8mpoeq123dv 6065 . . 3  |-  ( r  =  R  ->  (
x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) )  =  ( x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) ) )
10 dvrfvald.r . . . 4  |-  ( ph  ->  R  e. SRing )
1110elexd 2813 . . 3  |-  ( ph  ->  R  e.  _V )
12 basfn 13086 . . . . 5  |-  Base  Fn  _V
13 funfvex 5643 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5422 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1512, 11, 14sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  R
)  e.  _V )
16 eqidd 2230 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
17 eqidd 2230 . . . . . 6  |-  ( ph  ->  (Unit `  R )  =  (Unit `  R )
)
1816, 17, 10unitssd 14067 . . . . 5  |-  ( ph  ->  (Unit `  R )  C_  ( Base `  R
) )
1915, 18ssexd 4223 . . . 4  |-  ( ph  ->  (Unit `  R )  e.  _V )
20 mpoexga 6356 . . . 4  |-  ( ( ( Base `  R
)  e.  _V  /\  (Unit `  R )  e. 
_V )  ->  (
x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) )  e.  _V )
2115, 19, 20syl2anc 411 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  R ) ,  y  e.  (Unit `  R )  |->  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) )  e. 
_V )
221, 9, 11, 21fvmptd3 5727 . 2  |-  ( ph  ->  (/r `  R )  =  ( x  e.  (
Base `  R ) ,  y  e.  (Unit `  R )  |->  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) ) )
23 dvrfvald.d . 2  |-  ( ph  -> 
./  =  (/r `  R
) )
24 dvrfvald.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
25 dvrfvald.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
26 dvrfvald.t . . . 4  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
27 eqidd 2230 . . . 4  |-  ( ph  ->  x  =  x )
28 dvrfvald.i . . . . 5  |-  ( ph  ->  I  =  ( invr `  R ) )
2928fveq1d 5628 . . . 4  |-  ( ph  ->  ( I `  y
)  =  ( (
invr `  R ) `  y ) )
3026, 27, 29oveq123d 6021 . . 3  |-  ( ph  ->  ( x  .x.  (
I `  y )
)  =  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) )
3124, 25, 30mpoeq123dv 6065 . 2  |-  ( ph  ->  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )  =  ( x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) ) )
3222, 23, 313eqtr4d 2272 1  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    Fn wfn 5312   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   Basecbs 13027   .rcmulr 13106  SRingcsrg 13921  Unitcui 14045   invrcinvr 14078  /rcdvr 14089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-srg 13922  df-dvdsr 14047  df-unit 14048  df-dvr 14090
This theorem is referenced by:  dvrvald  14092
  Copyright terms: Public domain W3C validator