ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrfvald Unicode version

Theorem dvrfvald 13629
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrfvald.b  |-  ( ph  ->  B  =  ( Base `  R ) )
dvrfvald.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
dvrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
dvrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
dvrfvald.d  |-  ( ph  -> 
./  =  (/r `  R
) )
dvrfvald.r  |-  ( ph  ->  R  e. SRing )
Assertion
Ref Expression
dvrfvald  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
Distinct variable groups:    x, y, B   
x, I, y    x, R, y    x,  .x. , y    x, U, y    ph, x, y
Allowed substitution hints:    ./ ( x, y)

Proof of Theorem dvrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-dvr 13628 . . 3  |- /r  =  (
r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) ) )
2 fveq2 5554 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 fveq2 5554 . . . 4  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
4 fveq2 5554 . . . . 5  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
5 eqidd 2194 . . . . 5  |-  ( r  =  R  ->  x  =  x )
6 fveq2 5554 . . . . . 6  |-  ( r  =  R  ->  ( invr `  r )  =  ( invr `  R
) )
76fveq1d 5556 . . . . 5  |-  ( r  =  R  ->  (
( invr `  r ) `  y )  =  ( ( invr `  R
) `  y )
)
84, 5, 7oveq123d 5939 . . . 4  |-  ( r  =  R  ->  (
x ( .r `  r ) ( (
invr `  r ) `  y ) )  =  ( x ( .r
`  R ) ( ( invr `  R
) `  y )
) )
92, 3, 8mpoeq123dv 5980 . . 3  |-  ( r  =  R  ->  (
x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) )  =  ( x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) ) )
10 dvrfvald.r . . . 4  |-  ( ph  ->  R  e. SRing )
1110elexd 2773 . . 3  |-  ( ph  ->  R  e.  _V )
12 basfn 12676 . . . . 5  |-  Base  Fn  _V
13 funfvex 5571 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5354 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1512, 11, 14sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  R
)  e.  _V )
16 eqidd 2194 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
17 eqidd 2194 . . . . . 6  |-  ( ph  ->  (Unit `  R )  =  (Unit `  R )
)
1816, 17, 10unitssd 13605 . . . . 5  |-  ( ph  ->  (Unit `  R )  C_  ( Base `  R
) )
1915, 18ssexd 4169 . . . 4  |-  ( ph  ->  (Unit `  R )  e.  _V )
20 mpoexga 6265 . . . 4  |-  ( ( ( Base `  R
)  e.  _V  /\  (Unit `  R )  e. 
_V )  ->  (
x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) )  e.  _V )
2115, 19, 20syl2anc 411 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  R ) ,  y  e.  (Unit `  R )  |->  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) )  e. 
_V )
221, 9, 11, 21fvmptd3 5651 . 2  |-  ( ph  ->  (/r `  R )  =  ( x  e.  (
Base `  R ) ,  y  e.  (Unit `  R )  |->  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) ) )
23 dvrfvald.d . 2  |-  ( ph  -> 
./  =  (/r `  R
) )
24 dvrfvald.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
25 dvrfvald.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
26 dvrfvald.t . . . 4  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
27 eqidd 2194 . . . 4  |-  ( ph  ->  x  =  x )
28 dvrfvald.i . . . . 5  |-  ( ph  ->  I  =  ( invr `  R ) )
2928fveq1d 5556 . . . 4  |-  ( ph  ->  ( I `  y
)  =  ( (
invr `  R ) `  y ) )
3026, 27, 29oveq123d 5939 . . 3  |-  ( ph  ->  ( x  .x.  (
I `  y )
)  =  ( x ( .r `  R
) ( ( invr `  R ) `  y
) ) )
3124, 25, 30mpoeq123dv 5980 . 2  |-  ( ph  ->  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )  =  ( x  e.  ( Base `  R ) ,  y  e.  (Unit `  R
)  |->  ( x ( .r `  R ) ( ( invr `  R
) `  y )
) ) )
3222, 23, 313eqtr4d 2236 1  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    Fn wfn 5249   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   Basecbs 12618   .rcmulr 12696  SRingcsrg 13459  Unitcui 13583   invrcinvr 13616  /rcdvr 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-srg 13460  df-dvdsr 13585  df-unit 13586  df-dvr 13628
This theorem is referenced by:  dvrvald  13630
  Copyright terms: Public domain W3C validator