ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubfvalg Unicode version

Theorem grpsubfvalg 13247
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b  |-  B  =  ( Base `  G
)
grpsubval.p  |-  .+  =  ( +g  `  G )
grpsubval.i  |-  I  =  ( invg `  G )
grpsubval.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubfvalg  |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
Distinct variable groups:    x, y, B   
x, G, y    x, I, y    x,  .+ , y
Allowed substitution hints:    .- ( x, y)    V( x, y)

Proof of Theorem grpsubfvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . 2  |-  .-  =  ( -g `  G )
2 df-sbg 13207 . . 3  |-  -g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g )  |->  ( x ( +g  `  g
) ( ( invg `  g ) `
 y ) ) ) )
3 fveq2 5561 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpsubval.b . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2247 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5561 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 grpsubval.p . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2247 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
9 eqidd 2197 . . . . 5  |-  ( g  =  G  ->  x  =  x )
10 fveq2 5561 . . . . . . 7  |-  ( g  =  G  ->  ( invg `  g )  =  ( invg `  G ) )
11 grpsubval.i . . . . . . 7  |-  I  =  ( invg `  G )
1210, 11eqtr4di 2247 . . . . . 6  |-  ( g  =  G  ->  ( invg `  g )  =  I )
1312fveq1d 5563 . . . . 5  |-  ( g  =  G  ->  (
( invg `  g ) `  y
)  =  ( I `
 y ) )
148, 9, 13oveq123d 5946 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) ( ( invg `  g ) `
 y ) )  =  ( x  .+  ( I `  y
) ) )
155, 5, 14mpoeq123dv 5988 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
16 elex 2774 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
17 basfn 12761 . . . . . 6  |-  Base  Fn  _V
18 funfvex 5578 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1918funfni 5361 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2017, 16, 19sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
214, 20eqeltrid 2283 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
22 mpoexga 6279 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) )  e.  _V )
2321, 21, 22syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  ( I `
 y ) ) )  e.  _V )
242, 15, 16, 23fvmptd3 5658 . 2  |-  ( G  e.  V  ->  ( -g `  G )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
251, 24eqtrid 2241 1  |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   Basecbs 12703   +g cplusg 12780   invgcminusg 13203   -gcsg 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-sbg 13207
This theorem is referenced by:  grpsubval  13248  grpsubf  13281  grpsubpropdg  13306  grpsubpropd2  13307
  Copyright terms: Public domain W3C validator