ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubfvalg Unicode version

Theorem grpsubfvalg 12872
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b  |-  B  =  ( Base `  G
)
grpsubval.p  |-  .+  =  ( +g  `  G )
grpsubval.i  |-  I  =  ( invg `  G )
grpsubval.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubfvalg  |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
Distinct variable groups:    x, y, B   
x, G, y    x, I, y    x,  .+ , y
Allowed substitution hints:    .- ( x, y)    V( x, y)

Proof of Theorem grpsubfvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . 2  |-  .-  =  ( -g `  G )
2 df-sbg 12836 . . 3  |-  -g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g )  |->  ( x ( +g  `  g
) ( ( invg `  g ) `
 y ) ) ) )
3 fveq2 5515 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpsubval.b . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2228 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5515 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 grpsubval.p . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2228 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
9 eqidd 2178 . . . . 5  |-  ( g  =  G  ->  x  =  x )
10 fveq2 5515 . . . . . . 7  |-  ( g  =  G  ->  ( invg `  g )  =  ( invg `  G ) )
11 grpsubval.i . . . . . . 7  |-  I  =  ( invg `  G )
1210, 11eqtr4di 2228 . . . . . 6  |-  ( g  =  G  ->  ( invg `  g )  =  I )
1312fveq1d 5517 . . . . 5  |-  ( g  =  G  ->  (
( invg `  g ) `  y
)  =  ( I `
 y ) )
148, 9, 13oveq123d 5895 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) ( ( invg `  g ) `
 y ) )  =  ( x  .+  ( I `  y
) ) )
155, 5, 14mpoeq123dv 5936 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
16 elex 2748 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
17 basfn 12514 . . . . . 6  |-  Base  Fn  _V
18 funfvex 5532 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1918funfni 5316 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2017, 16, 19sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
214, 20eqeltrid 2264 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
22 mpoexga 6212 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) )  e.  _V )
2321, 21, 22syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  ( I `
 y ) ) )  e.  _V )
242, 15, 16, 23fvmptd3 5609 . 2  |-  ( G  e.  V  ->  ( -g `  G )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
251, 24eqtrid 2222 1  |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2737    Fn wfn 5211   ` cfv 5216  (class class class)co 5874    e. cmpo 5876   Basecbs 12456   +g cplusg 12530   invgcminusg 12832   -gcsg 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-inn 8918  df-ndx 12459  df-slot 12460  df-base 12462  df-sbg 12836
This theorem is referenced by:  grpsubval  12873  grpsubf  12903  grpsubpropdg  12928  grpsubpropd2  12929
  Copyright terms: Public domain W3C validator