ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubfvalg Unicode version

Theorem grpsubfvalg 12961
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b  |-  B  =  ( Base `  G
)
grpsubval.p  |-  .+  =  ( +g  `  G )
grpsubval.i  |-  I  =  ( invg `  G )
grpsubval.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubfvalg  |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
Distinct variable groups:    x, y, B   
x, G, y    x, I, y    x,  .+ , y
Allowed substitution hints:    .- ( x, y)    V( x, y)

Proof of Theorem grpsubfvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . 2  |-  .-  =  ( -g `  G )
2 df-sbg 12922 . . 3  |-  -g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g )  |->  ( x ( +g  `  g
) ( ( invg `  g ) `
 y ) ) ) )
3 fveq2 5530 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpsubval.b . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2240 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5530 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 grpsubval.p . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2240 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
9 eqidd 2190 . . . . 5  |-  ( g  =  G  ->  x  =  x )
10 fveq2 5530 . . . . . . 7  |-  ( g  =  G  ->  ( invg `  g )  =  ( invg `  G ) )
11 grpsubval.i . . . . . . 7  |-  I  =  ( invg `  G )
1210, 11eqtr4di 2240 . . . . . 6  |-  ( g  =  G  ->  ( invg `  g )  =  I )
1312fveq1d 5532 . . . . 5  |-  ( g  =  G  ->  (
( invg `  g ) `  y
)  =  ( I `
 y ) )
148, 9, 13oveq123d 5912 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) ( ( invg `  g ) `
 y ) )  =  ( x  .+  ( I `  y
) ) )
155, 5, 14mpoeq123dv 5953 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
16 elex 2763 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
17 basfn 12544 . . . . . 6  |-  Base  Fn  _V
18 funfvex 5547 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1918funfni 5331 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2017, 16, 19sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
214, 20eqeltrid 2276 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
22 mpoexga 6231 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) )  e.  _V )
2321, 21, 22syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  ( I `
 y ) ) )  e.  _V )
242, 15, 16, 23fvmptd3 5625 . 2  |-  ( G  e.  V  ->  ( -g `  G )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
251, 24eqtrid 2234 1  |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   _Vcvv 2752    Fn wfn 5226   ` cfv 5231  (class class class)co 5891    e. cmpo 5893   Basecbs 12486   +g cplusg 12561   invgcminusg 12918   -gcsg 12919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7921  ax-resscn 7922  ax-1re 7924  ax-addrcl 7927
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-inn 8939  df-ndx 12489  df-slot 12490  df-base 12492  df-sbg 12922
This theorem is referenced by:  grpsubval  12962  grpsubf  12995  grpsubpropdg  13020  grpsubpropd2  13021
  Copyright terms: Public domain W3C validator