ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubfvalg Unicode version

Theorem grpsubfvalg 13573
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b  |-  B  =  ( Base `  G
)
grpsubval.p  |-  .+  =  ( +g  `  G )
grpsubval.i  |-  I  =  ( invg `  G )
grpsubval.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubfvalg  |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
Distinct variable groups:    x, y, B   
x, G, y    x, I, y    x,  .+ , y
Allowed substitution hints:    .- ( x, y)    V( x, y)

Proof of Theorem grpsubfvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . 2  |-  .-  =  ( -g `  G )
2 df-sbg 13533 . . 3  |-  -g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g )  |->  ( x ( +g  `  g
) ( ( invg `  g ) `
 y ) ) ) )
3 fveq2 5626 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpsubval.b . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2280 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5626 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 grpsubval.p . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2280 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
9 eqidd 2230 . . . . 5  |-  ( g  =  G  ->  x  =  x )
10 fveq2 5626 . . . . . . 7  |-  ( g  =  G  ->  ( invg `  g )  =  ( invg `  G ) )
11 grpsubval.i . . . . . . 7  |-  I  =  ( invg `  G )
1210, 11eqtr4di 2280 . . . . . 6  |-  ( g  =  G  ->  ( invg `  g )  =  I )
1312fveq1d 5628 . . . . 5  |-  ( g  =  G  ->  (
( invg `  g ) `  y
)  =  ( I `
 y ) )
148, 9, 13oveq123d 6021 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) ( ( invg `  g ) `
 y ) )  =  ( x  .+  ( I `  y
) ) )
155, 5, 14mpoeq123dv 6065 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
16 elex 2811 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
17 basfn 13086 . . . . . 6  |-  Base  Fn  _V
18 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1918funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2017, 16, 19sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
214, 20eqeltrid 2316 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
22 mpoexga 6356 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) )  e.  _V )
2321, 21, 22syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  ( I `
 y ) ) )  e.  _V )
242, 15, 16, 23fvmptd3 5727 . 2  |-  ( G  e.  V  ->  ( -g `  G )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
251, 24eqtrid 2274 1  |-  ( G  e.  V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    Fn wfn 5312   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   Basecbs 13027   +g cplusg 13105   invgcminusg 13529   -gcsg 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-sbg 13533
This theorem is referenced by:  grpsubval  13574  grpsubf  13607  grpsubpropdg  13632  grpsubpropd2  13633
  Copyright terms: Public domain W3C validator