ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffvalg Unicode version

Theorem plusffvalg 13194
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1  |-  B  =  ( Base `  G
)
plusffval.2  |-  .+  =  ( +g  `  G )
plusffval.3  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusffvalg  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x, V, y
Allowed substitution hints:    .+^ ( x, y)

Proof of Theorem plusffvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2  |-  .+^  =  ( +f `  G
)
2 df-plusf 13187 . . 3  |-  +f 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
3 fveq2 5576 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 plusffval.1 . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2256 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5576 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 plusffval.2 . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2256 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 5961 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
105, 5, 9mpoeq123dv 6007 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) ) )
11 elex 2783 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
12 basfn 12890 . . . . . 6  |-  Base  Fn  _V
13 funfvex 5593 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1413funfni 5376 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1512, 11, 14sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
164, 15eqeltrid 2292 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
17 mpoexga 6298 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) )  e.  _V )
1816, 16, 17syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  y ) )  e.  _V )
192, 10, 11, 18fvmptd3 5673 . 2  |-  ( G  e.  V  ->  ( +f `  G
)  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  y ) ) )
201, 19eqtrid 2250 1  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    Fn wfn 5266   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   Basecbs 12832   +g cplusg 12909   +fcplusf 13185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-plusf 13187
This theorem is referenced by:  plusfvalg  13195  plusfeqg  13196  plusffng  13197  mgmplusf  13198
  Copyright terms: Public domain W3C validator