Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > plusffvalg | Unicode version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
plusffval.1 | |
plusffval.2 | |
plusffval.3 |
Ref | Expression |
---|---|
plusffvalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.3 | . 2 | |
2 | df-plusf 12640 | . . 3 | |
3 | fveq2 5507 | . . . . 5 | |
4 | plusffval.1 | . . . . 5 | |
5 | 3, 4 | eqtr4di 2226 | . . . 4 |
6 | fveq2 5507 | . . . . . 6 | |
7 | plusffval.2 | . . . . . 6 | |
8 | 6, 7 | eqtr4di 2226 | . . . . 5 |
9 | 8 | oveqd 5882 | . . . 4 |
10 | 5, 5, 9 | mpoeq123dv 5927 | . . 3 |
11 | elex 2746 | . . 3 | |
12 | basfn 12486 | . . . . . 6 | |
13 | funfvex 5524 | . . . . . . 7 | |
14 | 13 | funfni 5308 | . . . . . 6 |
15 | 12, 11, 14 | sylancr 414 | . . . . 5 |
16 | 4, 15 | eqeltrid 2262 | . . . 4 |
17 | mpoexga 6203 | . . . 4 | |
18 | 16, 16, 17 | syl2anc 411 | . . 3 |
19 | 2, 10, 11, 18 | fvmptd3 5601 | . 2 |
20 | 1, 19 | eqtrid 2220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 cvv 2735 wfn 5203 cfv 5208 (class class class)co 5865 cmpo 5867 cbs 12429 cplusg 12493 cplusf 12638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8893 df-ndx 12432 df-slot 12433 df-base 12435 df-plusf 12640 |
This theorem is referenced by: plusfvalg 12648 plusfeqg 12649 plusffng 12650 mgmplusf 12651 |
Copyright terms: Public domain | W3C validator |