ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffvalg Unicode version

Theorem plusffvalg 12593
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1  |-  B  =  ( Base `  G
)
plusffval.2  |-  .+  =  ( +g  `  G )
plusffval.3  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusffvalg  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x, V, y
Allowed substitution hints:    .+^ ( x, y)

Proof of Theorem plusffvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2  |-  .+^  =  ( +f `  G
)
2 df-plusf 12586 . . 3  |-  +f 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
3 fveq2 5486 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 plusffval.1 . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2217 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5486 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 plusffval.2 . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2217 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 5859 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
105, 5, 9mpoeq123dv 5904 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) ) )
11 elex 2737 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
12 basfn 12451 . . . . . 6  |-  Base  Fn  _V
13 funfvex 5503 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1413funfni 5288 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1512, 11, 14sylancr 411 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
164, 15eqeltrid 2253 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
17 mpoexga 6180 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) )  e.  _V )
1816, 16, 17syl2anc 409 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  y ) )  e.  _V )
192, 10, 11, 18fvmptd3 5579 . 2  |-  ( G  e.  V  ->  ( +f `  G
)  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  y ) ) )
201, 19syl5eq 2211 1  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   Basecbs 12394   +g cplusg 12457   +fcplusf 12584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400  df-plusf 12586
This theorem is referenced by:  plusfvalg  12594  plusfeqg  12595  plusffng  12596  mgmplusf  12597
  Copyright terms: Public domain W3C validator