ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffvalg Unicode version

Theorem plusffvalg 12616
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1  |-  B  =  ( Base `  G
)
plusffval.2  |-  .+  =  ( +g  `  G )
plusffval.3  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusffvalg  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x, V, y
Allowed substitution hints:    .+^ ( x, y)

Proof of Theorem plusffvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2  |-  .+^  =  ( +f `  G
)
2 df-plusf 12609 . . 3  |-  +f 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
3 fveq2 5496 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 plusffval.1 . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2221 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5496 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 plusffval.2 . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2221 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 5870 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
105, 5, 9mpoeq123dv 5915 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) ) )
11 elex 2741 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
12 basfn 12473 . . . . . 6  |-  Base  Fn  _V
13 funfvex 5513 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1413funfni 5298 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1512, 11, 14sylancr 412 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
164, 15eqeltrid 2257 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
17 mpoexga 6191 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) )  e.  _V )
1816, 16, 17syl2anc 409 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  y ) )  e.  _V )
192, 10, 11, 18fvmptd3 5589 . 2  |-  ( G  e.  V  ->  ( +f `  G
)  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  y ) ) )
201, 19eqtrid 2215 1  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    Fn wfn 5193   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   Basecbs 12416   +g cplusg 12480   +fcplusf 12607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-plusf 12609
This theorem is referenced by:  plusfvalg  12617  plusfeqg  12618  plusffng  12619  mgmplusf  12620
  Copyright terms: Public domain W3C validator