ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffvalg Unicode version

Theorem plusffvalg 13309
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1  |-  B  =  ( Base `  G
)
plusffval.2  |-  .+  =  ( +g  `  G )
plusffval.3  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusffvalg  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x, V, y
Allowed substitution hints:    .+^ ( x, y)

Proof of Theorem plusffvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2  |-  .+^  =  ( +f `  G
)
2 df-plusf 13302 . . 3  |-  +f 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
3 fveq2 5599 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 plusffval.1 . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2258 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5599 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 plusffval.2 . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2258 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 5984 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
105, 5, 9mpoeq123dv 6030 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) ) )
11 elex 2788 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
12 basfn 13005 . . . . . 6  |-  Base  Fn  _V
13 funfvex 5616 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1413funfni 5395 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1512, 11, 14sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
164, 15eqeltrid 2294 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
17 mpoexga 6321 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) )  e.  _V )
1816, 16, 17syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  y ) )  e.  _V )
192, 10, 11, 18fvmptd3 5696 . 2  |-  ( G  e.  V  ->  ( +f `  G
)  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  y ) ) )
201, 19eqtrid 2252 1  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    Fn wfn 5285   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   Basecbs 12947   +g cplusg 13024   +fcplusf 13300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-plusf 13302
This theorem is referenced by:  plusfvalg  13310  plusfeqg  13311  plusffng  13312  mgmplusf  13313
  Copyright terms: Public domain W3C validator