ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffvalg Unicode version

Theorem plusffvalg 12647
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1  |-  B  =  ( Base `  G
)
plusffval.2  |-  .+  =  ( +g  `  G )
plusffval.3  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusffvalg  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Distinct variable groups:    x, y, B   
x, G, y    x,  .+ , y    x, V, y
Allowed substitution hints:    .+^ ( x, y)

Proof of Theorem plusffvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2  |-  .+^  =  ( +f `  G
)
2 df-plusf 12640 . . 3  |-  +f 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
3 fveq2 5507 . . . . 5  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 plusffval.1 . . . . 5  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2226 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  B )
6 fveq2 5507 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
7 plusffval.2 . . . . . 6  |-  .+  =  ( +g  `  G )
86, 7eqtr4di 2226 . . . . 5  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
98oveqd 5882 . . . 4  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
105, 5, 9mpoeq123dv 5927 . . 3  |-  ( g  =  G  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) ) )
11 elex 2746 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
12 basfn 12486 . . . . . 6  |-  Base  Fn  _V
13 funfvex 5524 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1413funfni 5308 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1512, 11, 14sylancr 414 . . . . 5  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
164, 15eqeltrid 2262 . . . 4  |-  ( G  e.  V  ->  B  e.  _V )
17 mpoexga 6203 . . . 4  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y
) )  e.  _V )
1816, 16, 17syl2anc 411 . . 3  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  .+  y ) )  e.  _V )
192, 10, 11, 18fvmptd3 5601 . 2  |-  ( G  e.  V  ->  ( +f `  G
)  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  y ) ) )
201, 19eqtrid 2220 1  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   _Vcvv 2735    Fn wfn 5203   ` cfv 5208  (class class class)co 5865    e. cmpo 5867   Basecbs 12429   +g cplusg 12493   +fcplusf 12638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-inn 8893  df-ndx 12432  df-slot 12433  df-base 12435  df-plusf 12640
This theorem is referenced by:  plusfvalg  12648  plusfeqg  12649  plusffng  12650  mgmplusf  12651
  Copyright terms: Public domain W3C validator