ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blfvalps Unicode version

Theorem blfvalps 13179
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
blfvalps  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
Distinct variable groups:    x, r, y, D    X, r, x, y

Proof of Theorem blfvalps
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 df-bl 12784 . . 3  |-  ball  =  ( d  e.  _V  |->  ( x  e.  dom  dom  d ,  r  e. 
RR*  |->  { y  e. 
dom  dom  d  |  ( x d y )  <  r } ) )
21a1i 9 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ball  =  ( d  e.  _V  |->  ( x  e.  dom  dom  d ,  r  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
r } ) ) )
3 dmeq 4811 . . . . 5  |-  ( d  =  D  ->  dom  d  =  dom  D )
43dmeqd 4813 . . . 4  |-  ( d  =  D  ->  dom  dom  d  =  dom  dom  D )
5 psmetdmdm 13118 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )
65eqcomd 2176 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  dom  dom  D  =  X )
74, 6sylan9eqr 2225 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  dom  dom  d  =  X )
8 eqidd 2171 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  RR*  =  RR* )
9 simpr 109 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  d  =  D )
109oveqd 5870 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
x d y )  =  ( x D y ) )
1110breq1d 3999 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
( x d y )  <  r  <->  ( x D y )  < 
r ) )
127, 11rabeqbidv 2725 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  { y  e.  dom  dom  d  |  ( x d y )  <  r }  =  { y  e.  X  |  (
x D y )  <  r } )
137, 8, 12mpoeq123dv 5915 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
x  e.  dom  dom  d ,  r  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
r } )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
14 elex 2741 . 2  |-  ( D  e.  (PsMet `  X
)  ->  D  e.  _V )
15 ssrab2 3232 . . . . . 6  |-  { y  e.  X  |  ( x D y )  <  r }  C_  X
16 psmetrel 13116 . . . . . . . . 9  |-  Rel PsMet
17 relelfvdm 5528 . . . . . . . . 9  |-  ( ( Rel PsMet  /\  D  e.  (PsMet `  X ) )  ->  X  e.  dom PsMet )
1816, 17mpan 422 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
1918adantr 274 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  X  e.  dom PsMet )
20 elpw2g 4142 . . . . . . 7  |-  ( X  e.  dom PsMet  ->  ( { y  e.  X  | 
( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  |  (
x D y )  <  r }  C_  X ) )
2119, 20syl 14 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  ( { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  |  ( x D y )  <  r }  C_  X ) )
2215, 21mpbiri 167 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
2322ralrimivva 2552 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
24 eqid 2170 . . . . 5  |-  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  =  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )
2524fmpo 6180 . . . 4  |-  ( A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
2623, 25sylib 121 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
27 xrex 9813 . . . 4  |-  RR*  e.  _V
28 xpexg 4725 . . . 4  |-  ( ( X  e.  dom PsMet  /\  RR*  e.  _V )  ->  ( X  X.  RR* )  e.  _V )
2918, 27, 28sylancl 411 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( X  X.  RR* )  e.  _V )
3018pwexd 4167 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ~P X  e.  _V )
31 fex2 5366 . . 3  |-  ( ( ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) : ( X  X.  RR* ) --> ~P X  /\  ( X  X.  RR* )  e.  _V  /\  ~P X  e.  _V )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  e.  _V )
3226, 29, 30, 31syl3anc 1233 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )  e. 
_V )
332, 13, 14, 32fvmptd 5577 1  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566   class class class wbr 3989    |-> cmpt 4050    X. cxp 4609   dom cdm 4611   Rel wrel 4616   -->wf 5194   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   RR*cxr 7953    < clt 7954  PsMetcpsmet 12773   ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-psmet 12781  df-bl 12784
This theorem is referenced by:  blfval  13180  blvalps  13182  blfps  13203
  Copyright terms: Public domain W3C validator