ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blfvalps Unicode version

Theorem blfvalps 12926
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
blfvalps  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
Distinct variable groups:    x, r, y, D    X, r, x, y

Proof of Theorem blfvalps
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 df-bl 12531 . . 3  |-  ball  =  ( d  e.  _V  |->  ( x  e.  dom  dom  d ,  r  e. 
RR*  |->  { y  e. 
dom  dom  d  |  ( x d y )  <  r } ) )
21a1i 9 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ball  =  ( d  e.  _V  |->  ( x  e.  dom  dom  d ,  r  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
r } ) ) )
3 dmeq 4798 . . . . 5  |-  ( d  =  D  ->  dom  d  =  dom  D )
43dmeqd 4800 . . . 4  |-  ( d  =  D  ->  dom  dom  d  =  dom  dom  D )
5 psmetdmdm 12865 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )
65eqcomd 2170 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  dom  dom  D  =  X )
74, 6sylan9eqr 2219 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  dom  dom  d  =  X )
8 eqidd 2165 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  RR*  =  RR* )
9 simpr 109 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  d  =  D )
109oveqd 5853 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
x d y )  =  ( x D y ) )
1110breq1d 3986 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
( x d y )  <  r  <->  ( x D y )  < 
r ) )
127, 11rabeqbidv 2716 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  { y  e.  dom  dom  d  |  ( x d y )  <  r }  =  { y  e.  X  |  (
x D y )  <  r } )
137, 8, 12mpoeq123dv 5895 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
x  e.  dom  dom  d ,  r  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
r } )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
14 elex 2732 . 2  |-  ( D  e.  (PsMet `  X
)  ->  D  e.  _V )
15 ssrab2 3222 . . . . . 6  |-  { y  e.  X  |  ( x D y )  <  r }  C_  X
16 psmetrel 12863 . . . . . . . . 9  |-  Rel PsMet
17 relelfvdm 5512 . . . . . . . . 9  |-  ( ( Rel PsMet  /\  D  e.  (PsMet `  X ) )  ->  X  e.  dom PsMet )
1816, 17mpan 421 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
1918adantr 274 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  X  e.  dom PsMet )
20 elpw2g 4129 . . . . . . 7  |-  ( X  e.  dom PsMet  ->  ( { y  e.  X  | 
( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  |  (
x D y )  <  r }  C_  X ) )
2119, 20syl 14 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  ( { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  |  ( x D y )  <  r }  C_  X ) )
2215, 21mpbiri 167 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
2322ralrimivva 2546 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
24 eqid 2164 . . . . 5  |-  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  =  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )
2524fmpo 6161 . . . 4  |-  ( A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
2623, 25sylib 121 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
27 xrex 9783 . . . 4  |-  RR*  e.  _V
28 xpexg 4712 . . . 4  |-  ( ( X  e.  dom PsMet  /\  RR*  e.  _V )  ->  ( X  X.  RR* )  e.  _V )
2918, 27, 28sylancl 410 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( X  X.  RR* )  e.  _V )
3018pwexd 4154 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ~P X  e.  _V )
31 fex2 5350 . . 3  |-  ( ( ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) : ( X  X.  RR* ) --> ~P X  /\  ( X  X.  RR* )  e.  _V  /\  ~P X  e.  _V )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  e.  _V )
3226, 29, 30, 31syl3anc 1227 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )  e. 
_V )
332, 13, 14, 32fvmptd 5561 1  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   A.wral 2442   {crab 2446   _Vcvv 2721    C_ wss 3111   ~Pcpw 3553   class class class wbr 3976    |-> cmpt 4037    X. cxp 4596   dom cdm 4598   Rel wrel 4603   -->wf 5178   ` cfv 5182  (class class class)co 5836    e. cmpo 5838   RR*cxr 7923    < clt 7924  PsMetcpsmet 12520   ballcbl 12523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-map 6607  df-pnf 7926  df-mnf 7927  df-xr 7928  df-psmet 12528  df-bl 12531
This theorem is referenced by:  blfval  12927  blvalps  12929  blfps  12950
  Copyright terms: Public domain W3C validator