| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubpropdg | Unicode version | ||
| Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpsubpropd.b |
|
| grpsubpropd.p |
|
| grpsubpropdg.g |
|
| grpsubpropdg.h |
|
| Ref | Expression |
|---|---|
| grpsubpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubpropd.b |
. . 3
| |
| 2 | grpsubpropd.p |
. . . 4
| |
| 3 | eqidd 2197 |
. . . 4
| |
| 4 | eqidd 2197 |
. . . . . 6
| |
| 5 | grpsubpropdg.g |
. . . . . 6
| |
| 6 | grpsubpropdg.h |
. . . . . 6
| |
| 7 | 2 | oveqdr 5951 |
. . . . . 6
|
| 8 | 4, 1, 5, 6, 7 | grpinvpropdg 13217 |
. . . . 5
|
| 9 | 8 | fveq1d 5561 |
. . . 4
|
| 10 | 2, 3, 9 | oveq123d 5944 |
. . 3
|
| 11 | 1, 1, 10 | mpoeq123dv 5985 |
. 2
|
| 12 | eqid 2196 |
. . . 4
| |
| 13 | eqid 2196 |
. . . 4
| |
| 14 | eqid 2196 |
. . . 4
| |
| 15 | eqid 2196 |
. . . 4
| |
| 16 | 12, 13, 14, 15 | grpsubfvalg 13187 |
. . 3
|
| 17 | 5, 16 | syl 14 |
. 2
|
| 18 | eqid 2196 |
. . . 4
| |
| 19 | eqid 2196 |
. . . 4
| |
| 20 | eqid 2196 |
. . . 4
| |
| 21 | eqid 2196 |
. . . 4
| |
| 22 | 18, 19, 20, 21 | grpsubfvalg 13187 |
. . 3
|
| 23 | 6, 22 | syl 14 |
. 2
|
| 24 | 11, 17, 23 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-inn 8993 df-ndx 12691 df-slot 12692 df-base 12694 df-0g 12939 df-minusg 13146 df-sbg 13147 |
| This theorem is referenced by: rlmsubg 14024 |
| Copyright terms: Public domain | W3C validator |