ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropdg Unicode version

Theorem grpsubpropdg 12979
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
grpsubpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
grpsubpropdg.g  |-  ( ph  ->  G  e.  V )
grpsubpropdg.h  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
grpsubpropdg  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )

Proof of Theorem grpsubpropdg
Dummy variables  a  b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
2 grpsubpropd.p . . . 4  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
3 eqidd 2178 . . . 4  |-  ( ph  ->  a  =  a )
4 eqidd 2178 . . . . . 6  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
5 grpsubpropdg.g . . . . . 6  |-  ( ph  ->  G  e.  V )
6 grpsubpropdg.h . . . . . 6  |-  ( ph  ->  H  e.  W )
72oveqdr 5905 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  H ) y ) )
84, 1, 5, 6, 7grpinvpropdg 12950 . . . . 5  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
98fveq1d 5519 . . . 4  |-  ( ph  ->  ( ( invg `  G ) `  b
)  =  ( ( invg `  H
) `  b )
)
102, 3, 9oveq123d 5898 . . 3  |-  ( ph  ->  ( a ( +g  `  G ) ( ( invg `  G
) `  b )
)  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
111, 1, 10mpoeq123dv 5939 . 2  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
12 eqid 2177 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2177 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2177 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
15 eqid 2177 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
1612, 13, 14, 15grpsubfvalg 12923 . . 3  |-  ( G  e.  V  ->  ( -g `  G )  =  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) ) )
175, 16syl 14 . 2  |-  ( ph  ->  ( -g `  G
)  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) ) ) )
18 eqid 2177 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
19 eqid 2177 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
20 eqid 2177 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
21 eqid 2177 . . . 4  |-  ( -g `  H )  =  (
-g `  H )
2218, 19, 20, 21grpsubfvalg 12923 . . 3  |-  ( H  e.  W  ->  ( -g `  H )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
236, 22syl 14 . 2  |-  ( ph  ->  ( -g `  H
)  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
2411, 17, 233eqtr4d 2220 1  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   Basecbs 12464   +g cplusg 12538   invgcminusg 12883   -gcsg 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-0g 12712  df-minusg 12886  df-sbg 12887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator