ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropdg Unicode version

Theorem grpsubpropdg 13212
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
grpsubpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
grpsubpropdg.g  |-  ( ph  ->  G  e.  V )
grpsubpropdg.h  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
grpsubpropdg  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )

Proof of Theorem grpsubpropdg
Dummy variables  a  b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
2 grpsubpropd.p . . . 4  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
3 eqidd 2197 . . . 4  |-  ( ph  ->  a  =  a )
4 eqidd 2197 . . . . . 6  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
5 grpsubpropdg.g . . . . . 6  |-  ( ph  ->  G  e.  V )
6 grpsubpropdg.h . . . . . 6  |-  ( ph  ->  H  e.  W )
72oveqdr 5950 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  H ) y ) )
84, 1, 5, 6, 7grpinvpropdg 13183 . . . . 5  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
98fveq1d 5560 . . . 4  |-  ( ph  ->  ( ( invg `  G ) `  b
)  =  ( ( invg `  H
) `  b )
)
102, 3, 9oveq123d 5943 . . 3  |-  ( ph  ->  ( a ( +g  `  G ) ( ( invg `  G
) `  b )
)  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
111, 1, 10mpoeq123dv 5984 . 2  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
12 eqid 2196 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2196 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2196 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
15 eqid 2196 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
1612, 13, 14, 15grpsubfvalg 13153 . . 3  |-  ( G  e.  V  ->  ( -g `  G )  =  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) ) )
175, 16syl 14 . 2  |-  ( ph  ->  ( -g `  G
)  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) ) ) )
18 eqid 2196 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
19 eqid 2196 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
20 eqid 2196 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
21 eqid 2196 . . . 4  |-  ( -g `  H )  =  (
-g `  H )
2218, 19, 20, 21grpsubfvalg 13153 . . 3  |-  ( H  e.  W  ->  ( -g `  H )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
236, 22syl 14 . 2  |-  ( ph  ->  ( -g `  H
)  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
2411, 17, 233eqtr4d 2239 1  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   Basecbs 12654   +g cplusg 12731   invgcminusg 13109   -gcsg 13110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7968  ax-resscn 7969  ax-1re 7971  ax-addrcl 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8988  df-ndx 12657  df-slot 12658  df-base 12660  df-0g 12905  df-minusg 13112  df-sbg 13113
This theorem is referenced by:  rlmsubg  13990
  Copyright terms: Public domain W3C validator