ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropdg Unicode version

Theorem grpsubpropdg 13632
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
grpsubpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
grpsubpropdg.g  |-  ( ph  ->  G  e.  V )
grpsubpropdg.h  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
grpsubpropdg  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )

Proof of Theorem grpsubpropdg
Dummy variables  a  b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
2 grpsubpropd.p . . . 4  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
3 eqidd 2230 . . . 4  |-  ( ph  ->  a  =  a )
4 eqidd 2230 . . . . . 6  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
5 grpsubpropdg.g . . . . . 6  |-  ( ph  ->  G  e.  V )
6 grpsubpropdg.h . . . . . 6  |-  ( ph  ->  H  e.  W )
72oveqdr 6028 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  H ) y ) )
84, 1, 5, 6, 7grpinvpropdg 13603 . . . . 5  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
98fveq1d 5628 . . . 4  |-  ( ph  ->  ( ( invg `  G ) `  b
)  =  ( ( invg `  H
) `  b )
)
102, 3, 9oveq123d 6021 . . 3  |-  ( ph  ->  ( a ( +g  `  G ) ( ( invg `  G
) `  b )
)  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
111, 1, 10mpoeq123dv 6065 . 2  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
12 eqid 2229 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2229 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
15 eqid 2229 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
1612, 13, 14, 15grpsubfvalg 13573 . . 3  |-  ( G  e.  V  ->  ( -g `  G )  =  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) ) )
175, 16syl 14 . 2  |-  ( ph  ->  ( -g `  G
)  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) ) ) )
18 eqid 2229 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
19 eqid 2229 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
20 eqid 2229 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
21 eqid 2229 . . . 4  |-  ( -g `  H )  =  (
-g `  H )
2218, 19, 20, 21grpsubfvalg 13573 . . 3  |-  ( H  e.  W  ->  ( -g `  H )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
236, 22syl 14 . 2  |-  ( ph  ->  ( -g `  H
)  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
2411, 17, 233eqtr4d 2272 1  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   Basecbs 13027   +g cplusg 13105   invgcminusg 13529   -gcsg 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-minusg 13532  df-sbg 13533
This theorem is referenced by:  rlmsubg  14416
  Copyright terms: Public domain W3C validator