ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropdg Unicode version

Theorem grpsubpropdg 13436
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
grpsubpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
grpsubpropdg.g  |-  ( ph  ->  G  e.  V )
grpsubpropdg.h  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
grpsubpropdg  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )

Proof of Theorem grpsubpropdg
Dummy variables  a  b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
2 grpsubpropd.p . . . 4  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
3 eqidd 2206 . . . 4  |-  ( ph  ->  a  =  a )
4 eqidd 2206 . . . . . 6  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
5 grpsubpropdg.g . . . . . 6  |-  ( ph  ->  G  e.  V )
6 grpsubpropdg.h . . . . . 6  |-  ( ph  ->  H  e.  W )
72oveqdr 5972 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  H ) y ) )
84, 1, 5, 6, 7grpinvpropdg 13407 . . . . 5  |-  ( ph  ->  ( invg `  G )  =  ( invg `  H
) )
98fveq1d 5578 . . . 4  |-  ( ph  ->  ( ( invg `  G ) `  b
)  =  ( ( invg `  H
) `  b )
)
102, 3, 9oveq123d 5965 . . 3  |-  ( ph  ->  ( a ( +g  `  G ) ( ( invg `  G
) `  b )
)  =  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) )
111, 1, 10mpoeq123dv 6007 . 2  |-  ( ph  ->  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) )  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
12 eqid 2205 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2205 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2205 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
15 eqid 2205 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
1612, 13, 14, 15grpsubfvalg 13377 . . 3  |-  ( G  e.  V  ->  ( -g `  G )  =  ( a  e.  (
Base `  G ) ,  b  e.  ( Base `  G )  |->  ( a ( +g  `  G
) ( ( invg `  G ) `
 b ) ) ) )
175, 16syl 14 . 2  |-  ( ph  ->  ( -g `  G
)  =  ( a  e.  ( Base `  G
) ,  b  e.  ( Base `  G
)  |->  ( a ( +g  `  G ) ( ( invg `  G ) `  b
) ) ) )
18 eqid 2205 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
19 eqid 2205 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
20 eqid 2205 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
21 eqid 2205 . . . 4  |-  ( -g `  H )  =  (
-g `  H )
2218, 19, 20, 21grpsubfvalg 13377 . . 3  |-  ( H  e.  W  ->  ( -g `  H )  =  ( a  e.  (
Base `  H ) ,  b  e.  ( Base `  H )  |->  ( a ( +g  `  H
) ( ( invg `  H ) `
 b ) ) ) )
236, 22syl 14 . 2  |-  ( ph  ->  ( -g `  H
)  =  ( a  e.  ( Base `  H
) ,  b  e.  ( Base `  H
)  |->  ( a ( +g  `  H ) ( ( invg `  H ) `  b
) ) ) )
2411, 17, 233eqtr4d 2248 1  |-  ( ph  ->  ( -g `  G
)  =  ( -g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   Basecbs 12832   +g cplusg 12909   invgcminusg 13333   -gcsg 13334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-0g 13090  df-minusg 13336  df-sbg 13337
This theorem is referenced by:  rlmsubg  14220
  Copyright terms: Public domain W3C validator