| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq1 | GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2197 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 = 𝐶) | |
| 2 | 1 | rgen 2550 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶 |
| 3 | mpteq12 4116 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 4 | 2, 3 | mpan2 425 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ↦ cmpt 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4095 df-mpt 4096 |
| This theorem is referenced by: mpteq1d 4118 fmptap 5752 mpompt 6014 mpomptsx 6255 mpompts 6256 tposf12 6327 restco 14410 cnmpt1t 14521 cnmpt2t 14529 |
| Copyright terms: Public domain | W3C validator |