ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1 GIF version

Theorem mpteq1 4113
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpteq1 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mpteq1
StepHypRef Expression
1 eqidd 2194 . . 3 (𝑥𝐴𝐶 = 𝐶)
21rgen 2547 . 2 𝑥𝐴 𝐶 = 𝐶
3 mpteq12 4112 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐶) → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
42, 3mpan2 425 1 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wral 2472  cmpt 4090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-opab 4091  df-mpt 4092
This theorem is referenced by:  mpteq1d  4114  fmptap  5748  mpompt  6010  mpomptsx  6250  mpompts  6251  tposf12  6322  restco  14342  cnmpt1t  14453  cnmpt2t  14461
  Copyright terms: Public domain W3C validator