ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptap Unicode version

Theorem fmptap 5576
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptap.0a  |-  A  e. 
_V
fmptap.0b  |-  B  e. 
_V
fmptap.1  |-  ( R  u.  { A }
)  =  S
fmptap.2  |-  ( x  =  A  ->  C  =  B )
Assertion
Ref Expression
fmptap  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
Distinct variable groups:    x, A    x, B    x, R    x, S
Allowed substitution hint:    C( x)

Proof of Theorem fmptap
StepHypRef Expression
1 fmptap.0a . . . . 5  |-  A  e. 
_V
2 fmptap.0b . . . . 5  |-  B  e. 
_V
3 fmptsn 5575 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
41, 2, 3mp2an 420 . . . 4  |-  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B )
5 elsni 3513 . . . . . 6  |-  ( x  e.  { A }  ->  x  =  A )
6 fmptap.2 . . . . . 6  |-  ( x  =  A  ->  C  =  B )
75, 6syl 14 . . . . 5  |-  ( x  e.  { A }  ->  C  =  B )
87mpteq2ia 3982 . . . 4  |-  ( x  e.  { A }  |->  C )  =  ( x  e.  { A }  |->  B )
94, 8eqtr4i 2139 . . 3  |-  { <. A ,  B >. }  =  ( x  e.  { A }  |->  C )
109uneq2i 3195 . 2  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( ( x  e.  R  |->  C )  u.  ( x  e. 
{ A }  |->  C ) )
11 mptun 5222 . 2  |-  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( ( x  e.  R  |->  C )  u.  ( x  e.  { A }  |->  C ) )
12 fmptap.1 . . 3  |-  ( R  u.  { A }
)  =  S
13 mpteq1 3980 . . 3  |-  ( ( R  u.  { A } )  =  S  ->  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( x  e.  S  |->  C ) )
1412, 13ax-mp 5 . 2  |-  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( x  e.  S  |->  C )
1510, 11, 143eqtr2i 2142 1  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   _Vcvv 2658    u. cun 3037   {csn 3495   <.cop 3498    |-> cmpt 3957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-reu 2398  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator