ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptap Unicode version

Theorem fmptap 5675
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptap.0a  |-  A  e. 
_V
fmptap.0b  |-  B  e. 
_V
fmptap.1  |-  ( R  u.  { A }
)  =  S
fmptap.2  |-  ( x  =  A  ->  C  =  B )
Assertion
Ref Expression
fmptap  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
Distinct variable groups:    x, A    x, B    x, R    x, S
Allowed substitution hint:    C( x)

Proof of Theorem fmptap
StepHypRef Expression
1 fmptap.0a . . . . 5  |-  A  e. 
_V
2 fmptap.0b . . . . 5  |-  B  e. 
_V
3 fmptsn 5674 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
41, 2, 3mp2an 423 . . . 4  |-  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B )
5 elsni 3594 . . . . . 6  |-  ( x  e.  { A }  ->  x  =  A )
6 fmptap.2 . . . . . 6  |-  ( x  =  A  ->  C  =  B )
75, 6syl 14 . . . . 5  |-  ( x  e.  { A }  ->  C  =  B )
87mpteq2ia 4068 . . . 4  |-  ( x  e.  { A }  |->  C )  =  ( x  e.  { A }  |->  B )
94, 8eqtr4i 2189 . . 3  |-  { <. A ,  B >. }  =  ( x  e.  { A }  |->  C )
109uneq2i 3273 . 2  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( ( x  e.  R  |->  C )  u.  ( x  e. 
{ A }  |->  C ) )
11 mptun 5319 . 2  |-  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( ( x  e.  R  |->  C )  u.  ( x  e.  { A }  |->  C ) )
12 fmptap.1 . . 3  |-  ( R  u.  { A }
)  =  S
13 mpteq1 4066 . . 3  |-  ( ( R  u.  { A } )  =  S  ->  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( x  e.  S  |->  C ) )
1412, 13ax-mp 5 . 2  |-  ( x  e.  ( R  u.  { A } )  |->  C )  =  ( x  e.  S  |->  C )
1510, 11, 143eqtr2i 2192 1  |-  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114   {csn 3576   <.cop 3579    |-> cmpt 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator