Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmpt1t | Unicode version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | TopOn |
cnmpt11.a | |
cnmpt1t.b |
Ref | Expression |
---|---|
cnmpt1t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | . . . 4 TopOn | |
2 | toponuni 12653 | . . . 4 TopOn | |
3 | mpteq1 4066 | . . . 4 | |
4 | 1, 2, 3 | 3syl 17 | . . 3 |
5 | simpr 109 | . . . . . 6 | |
6 | cnmpt11.a | . . . . . . . . . 10 | |
7 | cntop2 12842 | . . . . . . . . . 10 | |
8 | 6, 7 | syl 14 | . . . . . . . . 9 |
9 | toptopon2 12657 | . . . . . . . . 9 TopOn | |
10 | 8, 9 | sylib 121 | . . . . . . . 8 TopOn |
11 | cnf2 12845 | . . . . . . . 8 TopOn TopOn | |
12 | 1, 10, 6, 11 | syl3anc 1228 | . . . . . . 7 |
13 | 12 | fvmptelrn 5638 | . . . . . 6 |
14 | eqid 2165 | . . . . . . 7 | |
15 | 14 | fvmpt2 5569 | . . . . . 6 |
16 | 5, 13, 15 | syl2anc 409 | . . . . 5 |
17 | cnmpt1t.b | . . . . . . . . . 10 | |
18 | cntop2 12842 | . . . . . . . . . 10 | |
19 | 17, 18 | syl 14 | . . . . . . . . 9 |
20 | toptopon2 12657 | . . . . . . . . 9 TopOn | |
21 | 19, 20 | sylib 121 | . . . . . . . 8 TopOn |
22 | cnf2 12845 | . . . . . . . 8 TopOn TopOn | |
23 | 1, 21, 17, 22 | syl3anc 1228 | . . . . . . 7 |
24 | 23 | fvmptelrn 5638 | . . . . . 6 |
25 | eqid 2165 | . . . . . . 7 | |
26 | 25 | fvmpt2 5569 | . . . . . 6 |
27 | 5, 24, 26 | syl2anc 409 | . . . . 5 |
28 | 16, 27 | opeq12d 3766 | . . . 4 |
29 | 28 | mpteq2dva 4072 | . . 3 |
30 | 4, 29 | eqtr3d 2200 | . 2 |
31 | eqid 2165 | . . . 4 | |
32 | nfcv 2308 | . . . . 5 | |
33 | nffvmpt1 5497 | . . . . . 6 | |
34 | nffvmpt1 5497 | . . . . . 6 | |
35 | 33, 34 | nfop 3774 | . . . . 5 |
36 | fveq2 5486 | . . . . . 6 | |
37 | fveq2 5486 | . . . . . 6 | |
38 | 36, 37 | opeq12d 3766 | . . . . 5 |
39 | 32, 35, 38 | cbvmpt 4077 | . . . 4 |
40 | 31, 39 | txcnmpt 12913 | . . 3 |
41 | 6, 17, 40 | syl2anc 409 | . 2 |
42 | 30, 41 | eqeltrrd 2244 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cop 3579 cuni 3789 cmpt 4043 wf 5184 cfv 5188 (class class class)co 5842 ctop 12635 TopOnctopon 12648 ccn 12825 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-cn 12828 df-tx 12893 |
This theorem is referenced by: cnmpt12f 12926 imasnopn 12939 cnrehmeocntop 13233 |
Copyright terms: Public domain | W3C validator |