ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1t Unicode version

Theorem cnmpt1t 13079
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
Assertion
Ref Expression
cnmpt1t  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Distinct variable groups:    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt1t
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponuni 12807 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3 mpteq1 4073 . . . 4  |-  ( X  =  U. J  -> 
( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
41, 2, 33syl 17 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
5 simpr 109 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
6 cnmpt11.a . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
7 cntop2 12996 . . . . . . . . . 10  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
9 toptopon2 12811 . . . . . . . . 9  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
108, 9sylib 121 . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
11 cnf2 12999 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  A ) : X --> U. K
)
121, 10, 6, 11syl3anc 1233 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> U. K )
1312fvmptelrn 5649 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  U. K )
14 eqid 2170 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
1514fvmpt2 5579 . . . . . 6  |-  ( ( x  e.  X  /\  A  e.  U. K )  ->  ( ( x  e.  X  |->  A ) `
 x )  =  A )
165, 13, 15syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  A ) `  x
)  =  A )
17 cnmpt1t.b . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
18 cntop2 12996 . . . . . . . . . 10  |-  ( ( x  e.  X  |->  B )  e.  ( J  Cn  L )  ->  L  e.  Top )
1917, 18syl 14 . . . . . . . . 9  |-  ( ph  ->  L  e.  Top )
20 toptopon2 12811 . . . . . . . . 9  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
2119, 20sylib 121 . . . . . . . 8  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
22 cnf2 12999 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  X  |->  B ) : X --> U. L
)
231, 21, 17, 22syl3anc 1233 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> U. L )
2423fvmptelrn 5649 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  U. L )
25 eqid 2170 . . . . . . 7  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
2625fvmpt2 5579 . . . . . 6  |-  ( ( x  e.  X  /\  B  e.  U. L )  ->  ( ( x  e.  X  |->  B ) `
 x )  =  B )
275, 24, 26syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  B ) `  x
)  =  B )
2816, 27opeq12d 3773 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. A ,  B >. )
2928mpteq2dva 4079 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
304, 29eqtr3d 2205 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
31 eqid 2170 . . . 4  |-  U. J  =  U. J
32 nfcv 2312 . . . . 5  |-  F/_ y <. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >.
33 nffvmpt1 5507 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  A ) `  y )
34 nffvmpt1 5507 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  B ) `  y )
3533, 34nfop 3781 . . . . 5  |-  F/_ x <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >.
36 fveq2 5496 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  A ) `  x
)  =  ( ( x  e.  X  |->  A ) `  y ) )
37 fveq2 5496 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  B ) `  x
)  =  ( ( x  e.  X  |->  B ) `  y ) )
3836, 37opeq12d 3773 . . . . 5  |-  ( x  =  y  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `
 y ) >.
)
3932, 35, 38cbvmpt 4084 . . . 4  |-  ( x  e.  U. J  |->  <.
( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( y  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >. )
4031, 39txcnmpt 13067 . . 3  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  e.  ( J  Cn  ( K 
tX  L ) ) )
416, 17, 40syl2anc 409 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  e.  ( J  Cn  ( K  tX  L ) ) )
4230, 41eqeltrrd 2248 1  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3586   U.cuni 3796    |-> cmpt 4050   -->wf 5194   ` cfv 5198  (class class class)co 5853   Topctop 12789  TopOnctopon 12802    Cn ccn 12979    tX ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835  df-cn 12982  df-tx 13047
This theorem is referenced by:  cnmpt12f  13080  imasnopn  13093  cnrehmeocntop  13387
  Copyright terms: Public domain W3C validator