| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmpt1t | Unicode version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j |
|
| cnmpt11.a |
|
| cnmpt1t.b |
|
| Ref | Expression |
|---|---|
| cnmpt1t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j |
. . . 4
| |
| 2 | toponuni 14689 |
. . . 4
| |
| 3 | mpteq1 4168 |
. . . 4
| |
| 4 | 1, 2, 3 | 3syl 17 |
. . 3
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | cnmpt11.a |
. . . . . . . . . 10
| |
| 7 | cntop2 14876 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . . 9
|
| 9 | toptopon2 14693 |
. . . . . . . . 9
| |
| 10 | 8, 9 | sylib 122 |
. . . . . . . 8
|
| 11 | cnf2 14879 |
. . . . . . . 8
| |
| 12 | 1, 10, 6, 11 | syl3anc 1271 |
. . . . . . 7
|
| 13 | 12 | fvmptelcdm 5788 |
. . . . . 6
|
| 14 | eqid 2229 |
. . . . . . 7
| |
| 15 | 14 | fvmpt2 5718 |
. . . . . 6
|
| 16 | 5, 13, 15 | syl2anc 411 |
. . . . 5
|
| 17 | cnmpt1t.b |
. . . . . . . . . 10
| |
| 18 | cntop2 14876 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | toptopon2 14693 |
. . . . . . . . 9
| |
| 21 | 19, 20 | sylib 122 |
. . . . . . . 8
|
| 22 | cnf2 14879 |
. . . . . . . 8
| |
| 23 | 1, 21, 17, 22 | syl3anc 1271 |
. . . . . . 7
|
| 24 | 23 | fvmptelcdm 5788 |
. . . . . 6
|
| 25 | eqid 2229 |
. . . . . . 7
| |
| 26 | 25 | fvmpt2 5718 |
. . . . . 6
|
| 27 | 5, 24, 26 | syl2anc 411 |
. . . . 5
|
| 28 | 16, 27 | opeq12d 3865 |
. . . 4
|
| 29 | 28 | mpteq2dva 4174 |
. . 3
|
| 30 | 4, 29 | eqtr3d 2264 |
. 2
|
| 31 | eqid 2229 |
. . . 4
| |
| 32 | nfcv 2372 |
. . . . 5
| |
| 33 | nffvmpt1 5638 |
. . . . . 6
| |
| 34 | nffvmpt1 5638 |
. . . . . 6
| |
| 35 | 33, 34 | nfop 3873 |
. . . . 5
|
| 36 | fveq2 5627 |
. . . . . 6
| |
| 37 | fveq2 5627 |
. . . . . 6
| |
| 38 | 36, 37 | opeq12d 3865 |
. . . . 5
|
| 39 | 32, 35, 38 | cbvmpt 4179 |
. . . 4
|
| 40 | 31, 39 | txcnmpt 14947 |
. . 3
|
| 41 | 6, 17, 40 | syl2anc 411 |
. 2
|
| 42 | 30, 41 | eqeltrrd 2307 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-topgen 13293 df-top 14672 df-topon 14685 df-bases 14717 df-cn 14862 df-tx 14927 |
| This theorem is referenced by: cnmpt12f 14960 imasnopn 14973 cnrehmeocntop 15284 |
| Copyright terms: Public domain | W3C validator |