ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1t Unicode version

Theorem cnmpt1t 12925
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
Assertion
Ref Expression
cnmpt1t  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Distinct variable groups:    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt1t
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponuni 12653 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3 mpteq1 4066 . . . 4  |-  ( X  =  U. J  -> 
( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
41, 2, 33syl 17 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
5 simpr 109 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
6 cnmpt11.a . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
7 cntop2 12842 . . . . . . . . . 10  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
9 toptopon2 12657 . . . . . . . . 9  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
108, 9sylib 121 . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
11 cnf2 12845 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  A ) : X --> U. K
)
121, 10, 6, 11syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> U. K )
1312fvmptelrn 5638 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  U. K )
14 eqid 2165 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
1514fvmpt2 5569 . . . . . 6  |-  ( ( x  e.  X  /\  A  e.  U. K )  ->  ( ( x  e.  X  |->  A ) `
 x )  =  A )
165, 13, 15syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  A ) `  x
)  =  A )
17 cnmpt1t.b . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
18 cntop2 12842 . . . . . . . . . 10  |-  ( ( x  e.  X  |->  B )  e.  ( J  Cn  L )  ->  L  e.  Top )
1917, 18syl 14 . . . . . . . . 9  |-  ( ph  ->  L  e.  Top )
20 toptopon2 12657 . . . . . . . . 9  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
2119, 20sylib 121 . . . . . . . 8  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
22 cnf2 12845 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  X  |->  B ) : X --> U. L
)
231, 21, 17, 22syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> U. L )
2423fvmptelrn 5638 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  U. L )
25 eqid 2165 . . . . . . 7  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
2625fvmpt2 5569 . . . . . 6  |-  ( ( x  e.  X  /\  B  e.  U. L )  ->  ( ( x  e.  X  |->  B ) `
 x )  =  B )
275, 24, 26syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  B ) `  x
)  =  B )
2816, 27opeq12d 3766 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. A ,  B >. )
2928mpteq2dva 4072 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
304, 29eqtr3d 2200 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
31 eqid 2165 . . . 4  |-  U. J  =  U. J
32 nfcv 2308 . . . . 5  |-  F/_ y <. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >.
33 nffvmpt1 5497 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  A ) `  y )
34 nffvmpt1 5497 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  B ) `  y )
3533, 34nfop 3774 . . . . 5  |-  F/_ x <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >.
36 fveq2 5486 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  A ) `  x
)  =  ( ( x  e.  X  |->  A ) `  y ) )
37 fveq2 5486 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  B ) `  x
)  =  ( ( x  e.  X  |->  B ) `  y ) )
3836, 37opeq12d 3766 . . . . 5  |-  ( x  =  y  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `
 y ) >.
)
3932, 35, 38cbvmpt 4077 . . . 4  |-  ( x  e.  U. J  |->  <.
( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( y  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >. )
4031, 39txcnmpt 12913 . . 3  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  e.  ( J  Cn  ( K 
tX  L ) ) )
416, 17, 40syl2anc 409 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  e.  ( J  Cn  ( K  tX  L ) ) )
4230, 41eqeltrrd 2244 1  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   <.cop 3579   U.cuni 3789    |-> cmpt 4043   -->wf 5184   ` cfv 5188  (class class class)co 5842   Topctop 12635  TopOnctopon 12648    Cn ccn 12825    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-tx 12893
This theorem is referenced by:  cnmpt12f  12926  imasnopn  12939  cnrehmeocntop  13233
  Copyright terms: Public domain W3C validator