Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmpt1t | Unicode version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | TopOn |
cnmpt11.a | |
cnmpt1t.b |
Ref | Expression |
---|---|
cnmpt1t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | . . . 4 TopOn | |
2 | toponuni 12807 | . . . 4 TopOn | |
3 | mpteq1 4073 | . . . 4 | |
4 | 1, 2, 3 | 3syl 17 | . . 3 |
5 | simpr 109 | . . . . . 6 | |
6 | cnmpt11.a | . . . . . . . . . 10 | |
7 | cntop2 12996 | . . . . . . . . . 10 | |
8 | 6, 7 | syl 14 | . . . . . . . . 9 |
9 | toptopon2 12811 | . . . . . . . . 9 TopOn | |
10 | 8, 9 | sylib 121 | . . . . . . . 8 TopOn |
11 | cnf2 12999 | . . . . . . . 8 TopOn TopOn | |
12 | 1, 10, 6, 11 | syl3anc 1233 | . . . . . . 7 |
13 | 12 | fvmptelrn 5649 | . . . . . 6 |
14 | eqid 2170 | . . . . . . 7 | |
15 | 14 | fvmpt2 5579 | . . . . . 6 |
16 | 5, 13, 15 | syl2anc 409 | . . . . 5 |
17 | cnmpt1t.b | . . . . . . . . . 10 | |
18 | cntop2 12996 | . . . . . . . . . 10 | |
19 | 17, 18 | syl 14 | . . . . . . . . 9 |
20 | toptopon2 12811 | . . . . . . . . 9 TopOn | |
21 | 19, 20 | sylib 121 | . . . . . . . 8 TopOn |
22 | cnf2 12999 | . . . . . . . 8 TopOn TopOn | |
23 | 1, 21, 17, 22 | syl3anc 1233 | . . . . . . 7 |
24 | 23 | fvmptelrn 5649 | . . . . . 6 |
25 | eqid 2170 | . . . . . . 7 | |
26 | 25 | fvmpt2 5579 | . . . . . 6 |
27 | 5, 24, 26 | syl2anc 409 | . . . . 5 |
28 | 16, 27 | opeq12d 3773 | . . . 4 |
29 | 28 | mpteq2dva 4079 | . . 3 |
30 | 4, 29 | eqtr3d 2205 | . 2 |
31 | eqid 2170 | . . . 4 | |
32 | nfcv 2312 | . . . . 5 | |
33 | nffvmpt1 5507 | . . . . . 6 | |
34 | nffvmpt1 5507 | . . . . . 6 | |
35 | 33, 34 | nfop 3781 | . . . . 5 |
36 | fveq2 5496 | . . . . . 6 | |
37 | fveq2 5496 | . . . . . 6 | |
38 | 36, 37 | opeq12d 3773 | . . . . 5 |
39 | 32, 35, 38 | cbvmpt 4084 | . . . 4 |
40 | 31, 39 | txcnmpt 13067 | . . 3 |
41 | 6, 17, 40 | syl2anc 409 | . 2 |
42 | 30, 41 | eqeltrrd 2248 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cop 3586 cuni 3796 cmpt 4050 wf 5194 cfv 5198 (class class class)co 5853 ctop 12789 TopOnctopon 12802 ccn 12979 ctx 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 df-cn 12982 df-tx 13047 |
This theorem is referenced by: cnmpt12f 13080 imasnopn 13093 cnrehmeocntop 13387 |
Copyright terms: Public domain | W3C validator |