Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmpt1t | Unicode version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | TopOn |
cnmpt11.a | |
cnmpt1t.b |
Ref | Expression |
---|---|
cnmpt1t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | . . . 4 TopOn | |
2 | toponuni 12373 | . . . 4 TopOn | |
3 | mpteq1 4048 | . . . 4 | |
4 | 1, 2, 3 | 3syl 17 | . . 3 |
5 | simpr 109 | . . . . . 6 | |
6 | cnmpt11.a | . . . . . . . . . 10 | |
7 | cntop2 12562 | . . . . . . . . . 10 | |
8 | 6, 7 | syl 14 | . . . . . . . . 9 |
9 | toptopon2 12377 | . . . . . . . . 9 TopOn | |
10 | 8, 9 | sylib 121 | . . . . . . . 8 TopOn |
11 | cnf2 12565 | . . . . . . . 8 TopOn TopOn | |
12 | 1, 10, 6, 11 | syl3anc 1220 | . . . . . . 7 |
13 | 12 | fvmptelrn 5617 | . . . . . 6 |
14 | eqid 2157 | . . . . . . 7 | |
15 | 14 | fvmpt2 5548 | . . . . . 6 |
16 | 5, 13, 15 | syl2anc 409 | . . . . 5 |
17 | cnmpt1t.b | . . . . . . . . . 10 | |
18 | cntop2 12562 | . . . . . . . . . 10 | |
19 | 17, 18 | syl 14 | . . . . . . . . 9 |
20 | toptopon2 12377 | . . . . . . . . 9 TopOn | |
21 | 19, 20 | sylib 121 | . . . . . . . 8 TopOn |
22 | cnf2 12565 | . . . . . . . 8 TopOn TopOn | |
23 | 1, 21, 17, 22 | syl3anc 1220 | . . . . . . 7 |
24 | 23 | fvmptelrn 5617 | . . . . . 6 |
25 | eqid 2157 | . . . . . . 7 | |
26 | 25 | fvmpt2 5548 | . . . . . 6 |
27 | 5, 24, 26 | syl2anc 409 | . . . . 5 |
28 | 16, 27 | opeq12d 3749 | . . . 4 |
29 | 28 | mpteq2dva 4054 | . . 3 |
30 | 4, 29 | eqtr3d 2192 | . 2 |
31 | eqid 2157 | . . . 4 | |
32 | nfcv 2299 | . . . . 5 | |
33 | nffvmpt1 5476 | . . . . . 6 | |
34 | nffvmpt1 5476 | . . . . . 6 | |
35 | 33, 34 | nfop 3757 | . . . . 5 |
36 | fveq2 5465 | . . . . . 6 | |
37 | fveq2 5465 | . . . . . 6 | |
38 | 36, 37 | opeq12d 3749 | . . . . 5 |
39 | 32, 35, 38 | cbvmpt 4059 | . . . 4 |
40 | 31, 39 | txcnmpt 12633 | . . 3 |
41 | 6, 17, 40 | syl2anc 409 | . 2 |
42 | 30, 41 | eqeltrrd 2235 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cop 3563 cuni 3772 cmpt 4025 wf 5163 cfv 5167 (class class class)co 5818 ctop 12355 TopOnctopon 12368 ccn 12545 ctx 12612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-map 6588 df-topgen 12332 df-top 12356 df-topon 12369 df-bases 12401 df-cn 12548 df-tx 12613 |
This theorem is referenced by: cnmpt12f 12646 imasnopn 12659 cnrehmeocntop 12953 |
Copyright terms: Public domain | W3C validator |