| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpomptsx | Unicode version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mpomptsx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . . 6
| |
| 2 | vex 2779 |
. . . . . 6
| |
| 3 | 1, 2 | op1std 6257 |
. . . . 5
|
| 4 | 3 | csbeq1d 3108 |
. . . 4
|
| 5 | 1, 2 | op2ndd 6258 |
. . . . . 6
|
| 6 | 5 | csbeq1d 3108 |
. . . . 5
|
| 7 | 6 | csbeq2dv 3127 |
. . . 4
|
| 8 | 4, 7 | eqtrd 2240 |
. . 3
|
| 9 | 8 | mpomptx 6059 |
. 2
|
| 10 | nfcv 2350 |
. . . 4
| |
| 11 | nfcv 2350 |
. . . . 5
| |
| 12 | nfcsb1v 3134 |
. . . . 5
| |
| 13 | 11, 12 | nfxp 4720 |
. . . 4
|
| 14 | sneq 3654 |
. . . . 5
| |
| 15 | csbeq1a 3110 |
. . . . 5
| |
| 16 | 14, 15 | xpeq12d 4718 |
. . . 4
|
| 17 | 10, 13, 16 | cbviun 3978 |
. . 3
|
| 18 | mpteq1 4144 |
. . 3
| |
| 19 | 17, 18 | ax-mp 5 |
. 2
|
| 20 | nfcv 2350 |
. . 3
| |
| 21 | nfcv 2350 |
. . 3
| |
| 22 | nfcv 2350 |
. . 3
| |
| 23 | nfcsb1v 3134 |
. . 3
| |
| 24 | nfcv 2350 |
. . . 4
| |
| 25 | nfcsb1v 3134 |
. . . 4
| |
| 26 | 24, 25 | nfcsb 3139 |
. . 3
|
| 27 | csbeq1a 3110 |
. . . 4
| |
| 28 | csbeq1a 3110 |
. . . 4
| |
| 29 | 27, 28 | sylan9eqr 2262 |
. . 3
|
| 30 | 20, 12, 21, 22, 23, 26, 15, 29 | cbvmpox 6046 |
. 2
|
| 31 | 9, 19, 30 | 3eqtr4ri 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: mpompts 6307 mpofvex 6314 |
| Copyright terms: Public domain | W3C validator |