| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpomptsx | Unicode version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mpomptsx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . . . . 6
| |
| 2 | vex 2802 |
. . . . . 6
| |
| 3 | 1, 2 | op1std 6294 |
. . . . 5
|
| 4 | 3 | csbeq1d 3131 |
. . . 4
|
| 5 | 1, 2 | op2ndd 6295 |
. . . . . 6
|
| 6 | 5 | csbeq1d 3131 |
. . . . 5
|
| 7 | 6 | csbeq2dv 3150 |
. . . 4
|
| 8 | 4, 7 | eqtrd 2262 |
. . 3
|
| 9 | 8 | mpomptx 6095 |
. 2
|
| 10 | nfcv 2372 |
. . . 4
| |
| 11 | nfcv 2372 |
. . . . 5
| |
| 12 | nfcsb1v 3157 |
. . . . 5
| |
| 13 | 11, 12 | nfxp 4746 |
. . . 4
|
| 14 | sneq 3677 |
. . . . 5
| |
| 15 | csbeq1a 3133 |
. . . . 5
| |
| 16 | 14, 15 | xpeq12d 4744 |
. . . 4
|
| 17 | 10, 13, 16 | cbviun 4002 |
. . 3
|
| 18 | mpteq1 4168 |
. . 3
| |
| 19 | 17, 18 | ax-mp 5 |
. 2
|
| 20 | nfcv 2372 |
. . 3
| |
| 21 | nfcv 2372 |
. . 3
| |
| 22 | nfcv 2372 |
. . 3
| |
| 23 | nfcsb1v 3157 |
. . 3
| |
| 24 | nfcv 2372 |
. . . 4
| |
| 25 | nfcsb1v 3157 |
. . . 4
| |
| 26 | 24, 25 | nfcsb 3162 |
. . 3
|
| 27 | csbeq1a 3133 |
. . . 4
| |
| 28 | csbeq1a 3133 |
. . . 4
| |
| 29 | 27, 28 | sylan9eqr 2284 |
. . 3
|
| 30 | 20, 12, 21, 22, 23, 26, 15, 29 | cbvmpox 6082 |
. 2
|
| 31 | 9, 19, 30 | 3eqtr4ri 2261 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fv 5326 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: mpompts 6344 mpofvex 6351 |
| Copyright terms: Public domain | W3C validator |