ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomptsx Unicode version

Theorem mpomptsx 6095
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
mpomptsx  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
Distinct variable groups:    x, y, z, A    y, B, z   
z, C
Allowed substitution hints:    B( x)    C( x, y)

Proof of Theorem mpomptsx
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2689 . . . . . 6  |-  u  e. 
_V
2 vex 2689 . . . . . 6  |-  v  e. 
_V
31, 2op1std 6046 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  ( 1st `  z
)  =  u )
43csbeq1d 3010 . . . 4  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
51, 2op2ndd 6047 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( 2nd `  z
)  =  v )
65csbeq1d 3010 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 2nd `  z
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
76csbeq2dv 3028 . . . 4  |-  ( z  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
84, 7eqtrd 2172 . . 3  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
98mpomptx 5862 . 2  |-  ( z  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C )  =  ( u  e.  A ,  v  e.  [_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
10 nfcv 2281 . . . 4  |-  F/_ u
( { x }  X.  B )
11 nfcv 2281 . . . . 5  |-  F/_ x { u }
12 nfcsb1v 3035 . . . . 5  |-  F/_ x [_ u  /  x ]_ B
1311, 12nfxp 4566 . . . 4  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
14 sneq 3538 . . . . 5  |-  ( x  =  u  ->  { x }  =  { u } )
15 csbeq1a 3012 . . . . 5  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
1614, 15xpeq12d 4564 . . . 4  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
1710, 13, 16cbviun 3850 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
18 mpteq1 4012 . . 3  |-  ( U_ x  e.  A  ( { x }  X.  B )  =  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  ->  (
z  e.  U_ x  e.  A  ( {
x }  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )  =  ( z  e.  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C ) )
1917, 18ax-mp 5 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C )  =  ( z  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
20 nfcv 2281 . . 3  |-  F/_ u B
21 nfcv 2281 . . 3  |-  F/_ u C
22 nfcv 2281 . . 3  |-  F/_ v C
23 nfcsb1v 3035 . . 3  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
24 nfcv 2281 . . . 4  |-  F/_ y
u
25 nfcsb1v 3035 . . . 4  |-  F/_ y [_ v  /  y ]_ C
2624, 25nfcsb 3037 . . 3  |-  F/_ y [_ u  /  x ]_ [_ v  /  y ]_ C
27 csbeq1a 3012 . . . 4  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
28 csbeq1a 3012 . . . 4  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
2927, 28sylan9eqr 2194 . . 3  |-  ( ( x  =  u  /\  y  =  v )  ->  C  =  [_ u  /  x ]_ [_ v  /  y ]_ C
)
3020, 12, 21, 22, 23, 26, 15, 29cbvmpox 5849 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( u  e.  A ,  v  e. 
[_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
319, 19, 303eqtr4ri 2171 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
Colors of variables: wff set class
Syntax hints:    = wceq 1331   [_csb 3003   {csn 3527   <.cop 3530   U_ciun 3813    |-> cmpt 3989    X. cxp 4537   ` cfv 5123    e. cmpo 5776   1stc1st 6036   2ndc2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fv 5131  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039
This theorem is referenced by:  mpompts  6096  mpofvex  6101
  Copyright terms: Public domain W3C validator