Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpomptsx | Unicode version |
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mpomptsx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . 6 | |
2 | vex 2729 | . . . . . 6 | |
3 | 1, 2 | op1std 6116 | . . . . 5 |
4 | 3 | csbeq1d 3052 | . . . 4 |
5 | 1, 2 | op2ndd 6117 | . . . . . 6 |
6 | 5 | csbeq1d 3052 | . . . . 5 |
7 | 6 | csbeq2dv 3071 | . . . 4 |
8 | 4, 7 | eqtrd 2198 | . . 3 |
9 | 8 | mpomptx 5933 | . 2 |
10 | nfcv 2308 | . . . 4 | |
11 | nfcv 2308 | . . . . 5 | |
12 | nfcsb1v 3078 | . . . . 5 | |
13 | 11, 12 | nfxp 4631 | . . . 4 |
14 | sneq 3587 | . . . . 5 | |
15 | csbeq1a 3054 | . . . . 5 | |
16 | 14, 15 | xpeq12d 4629 | . . . 4 |
17 | 10, 13, 16 | cbviun 3903 | . . 3 |
18 | mpteq1 4066 | . . 3 | |
19 | 17, 18 | ax-mp 5 | . 2 |
20 | nfcv 2308 | . . 3 | |
21 | nfcv 2308 | . . 3 | |
22 | nfcv 2308 | . . 3 | |
23 | nfcsb1v 3078 | . . 3 | |
24 | nfcv 2308 | . . . 4 | |
25 | nfcsb1v 3078 | . . . 4 | |
26 | 24, 25 | nfcsb 3082 | . . 3 |
27 | csbeq1a 3054 | . . . 4 | |
28 | csbeq1a 3054 | . . . 4 | |
29 | 27, 28 | sylan9eqr 2221 | . . 3 |
30 | 20, 12, 21, 22, 23, 26, 15, 29 | cbvmpox 5920 | . 2 |
31 | 9, 19, 30 | 3eqtr4ri 2197 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 csb 3045 csn 3576 cop 3579 ciun 3866 cmpt 4043 cxp 4602 cfv 5188 cmpo 5844 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: mpompts 6166 mpofvex 6171 |
Copyright terms: Public domain | W3C validator |