| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpomptsx | Unicode version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mpomptsx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . . 6
| |
| 2 | vex 2766 |
. . . . . 6
| |
| 3 | 1, 2 | op1std 6206 |
. . . . 5
|
| 4 | 3 | csbeq1d 3091 |
. . . 4
|
| 5 | 1, 2 | op2ndd 6207 |
. . . . . 6
|
| 6 | 5 | csbeq1d 3091 |
. . . . 5
|
| 7 | 6 | csbeq2dv 3110 |
. . . 4
|
| 8 | 4, 7 | eqtrd 2229 |
. . 3
|
| 9 | 8 | mpomptx 6013 |
. 2
|
| 10 | nfcv 2339 |
. . . 4
| |
| 11 | nfcv 2339 |
. . . . 5
| |
| 12 | nfcsb1v 3117 |
. . . . 5
| |
| 13 | 11, 12 | nfxp 4690 |
. . . 4
|
| 14 | sneq 3633 |
. . . . 5
| |
| 15 | csbeq1a 3093 |
. . . . 5
| |
| 16 | 14, 15 | xpeq12d 4688 |
. . . 4
|
| 17 | 10, 13, 16 | cbviun 3953 |
. . 3
|
| 18 | mpteq1 4117 |
. . 3
| |
| 19 | 17, 18 | ax-mp 5 |
. 2
|
| 20 | nfcv 2339 |
. . 3
| |
| 21 | nfcv 2339 |
. . 3
| |
| 22 | nfcv 2339 |
. . 3
| |
| 23 | nfcsb1v 3117 |
. . 3
| |
| 24 | nfcv 2339 |
. . . 4
| |
| 25 | nfcsb1v 3117 |
. . . 4
| |
| 26 | 24, 25 | nfcsb 3122 |
. . 3
|
| 27 | csbeq1a 3093 |
. . . 4
| |
| 28 | csbeq1a 3093 |
. . . 4
| |
| 29 | 27, 28 | sylan9eqr 2251 |
. . 3
|
| 30 | 20, 12, 21, 22, 23, 26, 15, 29 | cbvmpox 6000 |
. 2
|
| 31 | 9, 19, 30 | 3eqtr4ri 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 |
| This theorem is referenced by: mpompts 6256 mpofvex 6263 |
| Copyright terms: Public domain | W3C validator |