| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpomptsx | Unicode version | ||
| Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mpomptsx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . . . . 6
| |
| 2 | vex 2775 |
. . . . . 6
| |
| 3 | 1, 2 | op1std 6234 |
. . . . 5
|
| 4 | 3 | csbeq1d 3100 |
. . . 4
|
| 5 | 1, 2 | op2ndd 6235 |
. . . . . 6
|
| 6 | 5 | csbeq1d 3100 |
. . . . 5
|
| 7 | 6 | csbeq2dv 3119 |
. . . 4
|
| 8 | 4, 7 | eqtrd 2238 |
. . 3
|
| 9 | 8 | mpomptx 6036 |
. 2
|
| 10 | nfcv 2348 |
. . . 4
| |
| 11 | nfcv 2348 |
. . . . 5
| |
| 12 | nfcsb1v 3126 |
. . . . 5
| |
| 13 | 11, 12 | nfxp 4702 |
. . . 4
|
| 14 | sneq 3644 |
. . . . 5
| |
| 15 | csbeq1a 3102 |
. . . . 5
| |
| 16 | 14, 15 | xpeq12d 4700 |
. . . 4
|
| 17 | 10, 13, 16 | cbviun 3964 |
. . 3
|
| 18 | mpteq1 4128 |
. . 3
| |
| 19 | 17, 18 | ax-mp 5 |
. 2
|
| 20 | nfcv 2348 |
. . 3
| |
| 21 | nfcv 2348 |
. . 3
| |
| 22 | nfcv 2348 |
. . 3
| |
| 23 | nfcsb1v 3126 |
. . 3
| |
| 24 | nfcv 2348 |
. . . 4
| |
| 25 | nfcsb1v 3126 |
. . . 4
| |
| 26 | 24, 25 | nfcsb 3131 |
. . 3
|
| 27 | csbeq1a 3102 |
. . . 4
| |
| 28 | csbeq1a 3102 |
. . . 4
| |
| 29 | 27, 28 | sylan9eqr 2260 |
. . 3
|
| 30 | 20, 12, 21, 22, 23, 26, 15, 29 | cbvmpox 6023 |
. 2
|
| 31 | 9, 19, 30 | 3eqtr4ri 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fv 5279 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 |
| This theorem is referenced by: mpompts 6284 mpofvex 6291 |
| Copyright terms: Public domain | W3C validator |