ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpompts Unicode version

Theorem mpompts 6253
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
Assertion
Ref Expression
mpompts  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )
Distinct variable groups:    x, y, z, A    y, B, z   
z, C    x, B
Allowed substitution hints:    C( x, y)

Proof of Theorem mpompts
StepHypRef Expression
1 mpomptsx 6252 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
2 iunxpconst 4720 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
3 mpteq1 4114 . . 3  |-  ( U_ x  e.  A  ( { x }  X.  B )  =  ( A  X.  B )  ->  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )  =  ( z  e.  ( A  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C ) )
42, 3ax-mp 5 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C )  =  ( z  e.  ( A  X.  B ) 
|->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )
51, 4eqtri 2214 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   [_csb 3081   {csn 3619   U_ciun 3913    |-> cmpt 4091    X. cxp 4658   ` cfv 5255    e. cmpo 5921   1stc1st 6193   2ndc2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196
This theorem is referenced by:  dfmpo  6278
  Copyright terms: Public domain W3C validator