ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  msxms Unicode version

Theorem msxms 14435
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
msxms  |-  ( M  e.  MetSp  ->  M  e.  *MetSp )

Proof of Theorem msxms
StepHypRef Expression
1 eqid 2189 . . 3  |-  ( TopOpen `  M )  =  (
TopOpen `  M )
2 eqid 2189 . . 3  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2189 . . 3  |-  ( (
dist `  M )  |`  ( ( Base `  M
)  X.  ( Base `  M ) ) )  =  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )
41, 2, 3isms 14430 . 2  |-  ( M  e.  MetSp 
<->  ( M  e.  *MetSp  /\  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )  e.  ( Met `  ( Base `  M ) ) ) )
54simplbi 274 1  |-  ( M  e.  MetSp  ->  M  e.  *MetSp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160    X. cxp 4642    |` cres 4646   ` cfv 5235   Basecbs 12515   distcds 12601   TopOpenctopn 12748   Metcmet 13867   *MetSpcxms 14313   MetSpcms 14314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-res 4656  df-iota 5196  df-fv 5243  df-ms 14317
This theorem is referenced by:  mstps  14436
  Copyright terms: Public domain W3C validator