ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  msxms Unicode version

Theorem msxms 15132
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
msxms  |-  ( M  e.  MetSp  ->  M  e.  *MetSp )

Proof of Theorem msxms
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( TopOpen `  M )  =  (
TopOpen `  M )
2 eqid 2229 . . 3  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2229 . . 3  |-  ( (
dist `  M )  |`  ( ( Base `  M
)  X.  ( Base `  M ) ) )  =  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )
41, 2, 3isms 15127 . 2  |-  ( M  e.  MetSp 
<->  ( M  e.  *MetSp  /\  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )  e.  ( Met `  ( Base `  M ) ) ) )
54simplbi 274 1  |-  ( M  e.  MetSp  ->  M  e.  *MetSp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    X. cxp 4717    |` cres 4721   ` cfv 5318   Basecbs 13032   distcds 13119   TopOpenctopn 13273   Metcmet 14501   *MetSpcxms 15010   MetSpcms 15011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-res 4731  df-iota 5278  df-fv 5326  df-ms 15014
This theorem is referenced by:  mstps  15133  cnfldxms  15211
  Copyright terms: Public domain W3C validator