ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  msxms Unicode version

Theorem msxms 13098
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
msxms  |-  ( M  e.  MetSp  ->  M  e.  *MetSp )

Proof of Theorem msxms
StepHypRef Expression
1 eqid 2165 . . 3  |-  ( TopOpen `  M )  =  (
TopOpen `  M )
2 eqid 2165 . . 3  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2165 . . 3  |-  ( (
dist `  M )  |`  ( ( Base `  M
)  X.  ( Base `  M ) ) )  =  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )
41, 2, 3isms 13093 . 2  |-  ( M  e.  MetSp 
<->  ( M  e.  *MetSp  /\  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )  e.  ( Met `  ( Base `  M ) ) ) )
54simplbi 272 1  |-  ( M  e.  MetSp  ->  M  e.  *MetSp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136    X. cxp 4602    |` cres 4606   ` cfv 5188   Basecbs 12394   distcds 12466   TopOpenctopn 12557   Metcmet 12621   *MetSpcxms 12976   MetSpcms 12977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-res 4616  df-iota 5153  df-fv 5196  df-ms 12980
This theorem is referenced by:  mstps  13099
  Copyright terms: Public domain W3C validator