ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  msxms GIF version

Theorem msxms 14848
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
msxms (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)

Proof of Theorem msxms
StepHypRef Expression
1 eqid 2204 . . 3 (TopOpen‘𝑀) = (TopOpen‘𝑀)
2 eqid 2204 . . 3 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2204 . . 3 ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))
41, 2, 3isms 14843 . 2 (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀))))
54simplbi 274 1 (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175   × cxp 4671  cres 4675  cfv 5268  Basecbs 12751  distcds 12837  TopOpenctopn 12990  Metcmet 14217  ∞MetSpcxms 14726  MetSpcms 14727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-res 4685  df-iota 5229  df-fv 5276  df-ms 14730
This theorem is referenced by:  mstps  14849  cnfldxms  14927
  Copyright terms: Public domain W3C validator