Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > msxms | GIF version |
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
msxms | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
2 | eqid 2165 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2165 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
4 | 1, 2, 3 | isms 13093 | . 2 ⊢ (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀)))) |
5 | 4 | simplbi 272 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 × cxp 4602 ↾ cres 4606 ‘cfv 5188 Basecbs 12394 distcds 12466 TopOpenctopn 12557 Metcmet 12621 ∞MetSpcxms 12976 MetSpcms 12977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-res 4616 df-iota 5153 df-fv 5196 df-ms 12980 |
This theorem is referenced by: mstps 13099 |
Copyright terms: Public domain | W3C validator |