ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmstps Unicode version

Theorem xmstps 14442
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
xmstps  |-  ( M  e.  *MetSp  ->  M  e.  TopSp )

Proof of Theorem xmstps
StepHypRef Expression
1 eqid 2189 . . 3  |-  ( TopOpen `  M )  =  (
TopOpen `  M )
2 eqid 2189 . . 3  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2189 . . 3  |-  ( (
dist `  M )  |`  ( ( Base `  M
)  X.  ( Base `  M ) ) )  =  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )
41, 2, 3isxms 14436 . 2  |-  ( M  e.  *MetSp  <->  ( M  e.  TopSp  /\  ( TopOpen `  M )  =  (
MetOpen `  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) ) ) ) )
54simplbi 274 1  |-  ( M  e.  *MetSp  ->  M  e.  TopSp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    X. cxp 4645    |` cres 4649   ` cfv 5238   Basecbs 12523   distcds 12609   TopOpenctopn 12756   MetOpencmopn 13879   TopSpctps 14015   *MetSpcxms 14321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-xp 4653  df-res 4659  df-iota 5199  df-fv 5246  df-xms 14324
This theorem is referenced by:  mstps  14444
  Copyright terms: Public domain W3C validator