ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmstps Unicode version

Theorem xmstps 13996
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
xmstps  |-  ( M  e.  *MetSp  ->  M  e.  TopSp )

Proof of Theorem xmstps
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( TopOpen `  M )  =  (
TopOpen `  M )
2 eqid 2177 . . 3  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2177 . . 3  |-  ( (
dist `  M )  |`  ( ( Base `  M
)  X.  ( Base `  M ) ) )  =  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )
41, 2, 3isxms 13990 . 2  |-  ( M  e.  *MetSp  <->  ( M  e.  TopSp  /\  ( TopOpen `  M )  =  (
MetOpen `  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) ) ) ) )
54simplbi 274 1  |-  ( M  e.  *MetSp  ->  M  e.  TopSp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148    X. cxp 4626    |` cres 4630   ` cfv 5218   Basecbs 12464   distcds 12547   TopOpenctopn 12694   MetOpencmopn 13484   TopSpctps 13569   *MetSpcxms 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-res 4640  df-iota 5180  df-fv 5226  df-xms 13878
This theorem is referenced by:  mstps  13998
  Copyright terms: Public domain W3C validator