ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmstps Unicode version

Theorem xmstps 14693
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
xmstps  |-  ( M  e.  *MetSp  ->  M  e.  TopSp )

Proof of Theorem xmstps
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( TopOpen `  M )  =  (
TopOpen `  M )
2 eqid 2196 . . 3  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2196 . . 3  |-  ( (
dist `  M )  |`  ( ( Base `  M
)  X.  ( Base `  M ) ) )  =  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) )
41, 2, 3isxms 14687 . 2  |-  ( M  e.  *MetSp  <->  ( M  e.  TopSp  /\  ( TopOpen `  M )  =  (
MetOpen `  ( ( dist `  M )  |`  (
( Base `  M )  X.  ( Base `  M
) ) ) ) ) )
54simplbi 274 1  |-  ( M  e.  *MetSp  ->  M  e.  TopSp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    X. cxp 4661    |` cres 4665   ` cfv 5258   Basecbs 12678   distcds 12764   TopOpenctopn 12911   MetOpencmopn 14097   TopSpctps 14266   *MetSpcxms 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-res 4675  df-iota 5219  df-fv 5266  df-xms 14575
This theorem is referenced by:  mstps  14695
  Copyright terms: Public domain W3C validator