ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul12i Unicode version

Theorem mul12i 7920
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
mul.1  |-  A  e.  CC
mul.2  |-  B  e.  CC
mul.3  |-  C  e.  CC
Assertion
Ref Expression
mul12i  |-  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
)

Proof of Theorem mul12i
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 mul.2 . 2  |-  B  e.  CC
3 mul.3 . 2  |-  C  e.  CC
4 mul12 7903 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
) )
51, 2, 3, 4mp3an 1315 1  |-  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7630    x. cmul 7637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-mulcom 7733  ax-mulass 7735
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  decmul10add  9262
  Copyright terms: Public domain W3C validator