| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul12i | Unicode version | ||
| Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| mul.1 |
|
| mul.2 |
|
| mul.3 |
|
| Ref | Expression |
|---|---|
| mul12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 |
. 2
| |
| 2 | mul.2 |
. 2
| |
| 3 | mul.3 |
. 2
| |
| 4 | mul12 8172 |
. 2
| |
| 5 | 1, 2, 3, 4 | mp3an 1348 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-mulcom 7997 ax-mulass 7999 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: decmul10add 9542 decsplit 12623 |
| Copyright terms: Public domain | W3C validator |