| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul12 | Unicode version | ||
| Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.) |
| Ref | Expression |
|---|---|
| mul12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom 8010 |
. . . 4
| |
| 2 | 1 | oveq1d 5938 |
. . 3
|
| 3 | 2 | 3adant3 1019 |
. 2
|
| 4 | mulass 8012 |
. 2
| |
| 5 | mulass 8012 |
. . 3
| |
| 6 | 5 | 3com12 1209 |
. 2
|
| 7 | 3, 4, 6 | 3eqtr3d 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-mulcom 7982 ax-mulass 7984 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 |
| This theorem is referenced by: mul12i 8174 mul12d 8180 mulreap 11031 demoivre 11940 demoivreALT 11941 dvdscmul 11985 dvdstr 11995 sinperlem 15054 coskpi 15094 |
| Copyright terms: Public domain | W3C validator |