ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul32i Unicode version

Theorem mul32i 8254
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
Hypotheses
Ref Expression
mul.1  |-  A  e.  CC
mul.2  |-  B  e.  CC
mul.3  |-  C  e.  CC
Assertion
Ref Expression
mul32i  |-  ( ( A  x.  B )  x.  C )  =  ( ( A  x.  C )  x.  B
)

Proof of Theorem mul32i
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 mul.2 . 2  |-  B  e.  CC
3 mul.3 . 2  |-  C  e.  CC
4 mul32 8237 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( A  x.  C )  x.  B ) )
51, 2, 3, 4mp3an 1350 1  |-  ( ( A  x.  B )  x.  C )  =  ( ( A  x.  C )  x.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958    x. cmul 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-mulcom 8061  ax-mulass 8063
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  8th4div3  9291  dec5nprm  12852  dec2nprm  12853  karatsuba  12868
  Copyright terms: Public domain W3C validator