ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul31 Unicode version

Theorem mul31 8277
Description: Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul31  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( C  x.  B )  x.  A ) )

Proof of Theorem mul31
StepHypRef Expression
1 mulcom 8128 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
21oveq2d 6017 . . 3  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C )
)  =  ( A  x.  ( C  x.  B ) ) )
323adant1 1039 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( A  x.  ( C  x.  B )
) )
4 mulass 8130 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
5 mulcl 8126 . . . . 5  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  B
)  e.  CC )
65ancoms 268 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  B
)  e.  CC )
763adant1 1039 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  B )  e.  CC )
8 simp1 1021 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
97, 8mulcomd 8168 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  x.  B
)  x.  A )  =  ( A  x.  ( C  x.  B
) ) )
103, 4, 93eqtr4d 2272 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( C  x.  B )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    x. cmul 8004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-mulcl 8097  ax-mulcom 8100  ax-mulass 8102
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  mul31d  8300
  Copyright terms: Public domain W3C validator